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Cross-polarization Dynamics 
 
 
Introduction 
 
     Low(er) gamma nuclei present a challenge to the NMR spectroscopist due to their 
small magnetogyric ratio, often low natural abundance, and typically long spin-lattice 
relaxation times.  All three conspire to yield low sensitivity.  The cross-polarization1 
experiment overcomes these challenges to offer high-sensitivity spectra of natural-
abundance rare spins in the solid state by providing polarization transfer from abundant I 
spins.   
     The purpose here is to explain how the cross-polarization technique achieves this 
transfer.  In particular, the origin of the dipolar Hamiltonian and its role in the 
polarization transfer is described.  Signal enhancement is described in terms of a 
thermodynamic model, which has proven very useful.  However, some limitations of the 
model are discussed.  Finally, the dynamics of the process are illustrated with the 
experimental results from the 1H-13C cross polarization of adamantane and glycine.  
Consequences of experimental choices, such as Hartmann-Hahn2 contact times and 
magic-angle spinning (MAS)3,4, are shown.  In particular, the issue of quantification is 
addressed.       
 
 
The Dipolar Hamiltonian 
 
     The classical dipolar Hamiltonian derives from the calculation of the magnetic field of 
a nuclear spin and the interaction energy of a second nucleus with this field.  The usual 
approach to this problem, often found in basic electricity and magnetism physics texts5 
and in some NMR texts6, is to calculate the magnetic field due to a "distant circuit."  
Such an approach is reasonable, given the typical nuclear diameters relative to the bond 
lengths between neighboring nuclei.  The typical diameter of a nucleus is on the order of 
10-15 m, whereas typical bond lengths are of the order of 10-10 m.  The five orders of 
magnitude difference in length scale between the nuclear separation and the "size" of the 
nuclei does fit the model of the first nucleus as a "distant circuit."  This model shows that 
the magnetic field of a distant circuit does not depend upon its detailed geometry.  It only 

depends upon its magnetic moment, 
→
m .  As a result, this calculation of a magnetic field 

due to a "distant circuit" describes the magnetic field due to a nuclear dipole very 
accurately.     
     The details of the calculation of the field are given below in Appendix I.  The resulting 
magnetic field due to a "distant circuit" is 
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The energy of a second magnetic moment '
→
m  interacting with this magnetic field is given 

by 
→→

⋅−= BmE '  , which gives the classical interaction energy 
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     This is a convenient point for a brief discussion of units.  There are two systems in 
common use to describe electromagnetic quantities, the Systeme Internationale (SI) of 
units and the gaussian (cgs) system.   
     In SI (mks) units, there is a distinction to the unit of the magnetic field and the 

magnetic induction.  The quality that acts directly is the magnetic induction,
→
B , whereas 

the magnetic field,
→
H , is the directly measured quantity in practical electrical 

measurements.  The magnetic field,
→
H , has units of amp/m.  In SI, it is necessary to 

multiply the magnetic field,
→
H , by the permeability of free space, 0µ , (because the space 

between the nuclei is considered to be free space) to determine the magnetic induction 
→
B at the site of a dipole.  The permeability has units of webers/ amp m.  The magnetic 

induction, 
→
B , is expressed in webers/m2, also called teslas.    The magnetic moment 

→
m  

has units of amp m2.   
     In the gaussian (cgs) system, magnetic induction has units of gauss; and units are 

chosen such that in free space 
→
B and 

→
H are the same.  However, the unit of magnetic 

field in the gaussian system is called the oersted.   
     In NMR spectroscopy it is usual to express energy differences by the equivalent 
frequency, given as ν in Hertz or as ω in radians/sec.  The two units are related by the 
simple formula πνω 2= .  These frequencies are related to equivlalent energies by 
Planck's relation, whether in SI or the gaussian system.  In particular, the frequency is 
converted to the energy by multiplication by Planck's constant, h, or by Planck's constant 

divided by 2π, π2
h , for the circular frequency and radial frequency, respectively.     

     For conversion to the quantum mechanical problem, one replaces the classical 

magnetic moment with the quantum mechanical operator for it:  
→→

= I
h

m
π

γ
2

.  With this 

change, the quantum mechanical dipolar Hamiltonian is written as 
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     Following Abragam7, with θ and φ as the polar coordinates of the vector 
→
r and by 

using the raising and lowering operators I± = IX + IY, the dipolar Hamiltonian can be 
rewritten in terms of what is commonly called the "dipolar alphabet" 
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where 
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     The reason for writing the dipolar Hamiltonian in this way is that it exposes how 
different parts of the Hamiltonian connect the various angular momentum levels.  Of 
particular importance are the transitions in high magnetic field enabled by each term. 
 
A         0=∆ jm               0=∆ km               0)( =+∆ kj mm                  (5) 
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     For identical spins, i.e., those subject to homonuclear dipolar coupling, the first two 
terms, A and B, describe the secular part of the interaction since they commute with the 
Zeeman Hamiltonian and thus will have simultaneous eigenstates with the Zeeman 
Hamiltonian.  For inequivalent spins, i.e., those subject to heteronuclear dipolar coupling, 
only the first term A commutes with the Zeeman Hamiltonian.  In sufficiently high 
magnetic field these two terms are all that are required to determine the energy-level 
scheme for the system through first order and are often referred to as the "truncated" 
dipolar interactions7. 
     The B term represents a process in which there exists a simultaneous flip of two spins 
in the opposite directions and is usually referred to as the "flip-flop" term.  As mentioned, 
in the case of heteronuclear dipolar coupling, this term does not commute with the 
Zeeman Hamiltonian and is not included in the dipolar Hamiltonian.  However, it is 
precisely this term that becomes important in the rotating frame and transfers polarization 
in the cross-polarization experiment.  Kubo and Tomita8 in their classic paper on the 
quantum mechanical treatment of NMR show that this term is better at energy transfer 
rather than at relaxation. 
     Another way to say this is to realize that the A and B terms yield energy differences 
corresponding to a frequency ω0 for identical spins.  The C, D, E, and F terms yield 
energy differences corresponding to frequencies of 0 and 2 ω0.  These last four terms are 
not important for consideration of transfer and are simply neglected in the development 
of cross-polarization transfer.  That is, the A and B terms comprise the truncated dipolar 
Hamiltonian used in the theoretical development of cross polarization. 
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Cross-polarization Mechanism 
 
     The cross-polarization mechanism can be best explained and is mostly used in systems 
having abundant I spins with a higher magnetogyric ratio and rare S spins with a lower 
magnetogyric ratio.  The most common experiment transfers energy from 1H, as the I 
spins, to 13C, as the S spins.   
     The pulse sequence for cross polarization from the abundant I spins to the rare S spins 
begins with a ninety-degree pulse on the I spins.  The phases of the radiofrequency (rf) 
pulses are defined relative to the axes of the rotating frames of the nuclei.  If the ninety-
degree pulse applied to the I spins has a rf phase of X, then the I-spin magnetization ends 
up along the Y axis in the rotating frame at the end of the pulse, presuming that the 
magnetogyric ratio of the I spin is positive, or along the -Y axis, if the magnetogyric ratio 
is negative.  The phase of the I-spin rf irradiation is then quickly switched to the Y phase 
to lock the magnetization along this axis while the S-spin rf irradiation is turned on 
simultaneously. During the simultaneous rf irradiation of both I and S spins, polarization 
is transferred from the abundant I spins to the rare S spins, creating S magnetization by 
draining polarization away from the I spins.  Finally, at some later time, the S-spin rf 
irradiation is turned off and the transverse S-spin magnetization is measured while the I-
spin rf irradiation remains on during the acquisition to provide decoupling.   
 

Spin Lock)y Decouple

Hartmann-Hahn

I

S

90)x

 
 
     Quantum mechanics provides a description of the mechanism for cross polarization.  
One may think of the interactions in terms of Zeeman interactions.  For the Zeeman 
interaction, the spin's energy levels are given by the dot product of the magnetic moment 
with the magnetic induction.  It is not possible to have the same energy levels for nuclei 
with differing magnetogyric ratios in only one magnetic induction, such as the static 
magnetic field in the laboratory.  The magnetogyric ratios of the I and S spins are 
constants.  However, the energy levels for two differing nuclei can be made the same if 
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two magnetic inductions are used.  In this case, the two magnetic inductions are the 
rotating components of the radiofrequency radiation applied to the I and S spins.  By 
matching the Hartmann-Hahn condition 

rfrf SI ωω = , the magnetic inductions from the rf 

pulses are of such a magnitude that the I and S spins have a common energy-level scheme 
in the rotating frame.  That is, the energy levels for the I and S spins are matched in the 
rotating frames of the two different nuclei.  The normally forbidden "flip-flop" transitions 
of the B term in the heteronuclear dipolar interaction are active in the rotating frame 
under these conditions, producing "allowed" simultaneous spin flips of the I and S spins 
with exchange of energy.   
     An alternative description of the mechanism of cross polarization can be given in 
terms of a thermodynamic model.  Thermodynamics can be applied in the rotating frame 
since the Hamiltonian is effectively time-independent. 
     Thermodynamics applies to populations of energy states.  Generally, as the 
temperature is lowered, states with lower energy become more populated compared to 
higher-energy states.  This can be, in a simple way, thought of as an increase in order of 
the system.  This is seen as a gas condenses into a liquid with an increase in local order as 
the temperature is lowered.  Below the freezing point, the liquid becomes even more 
ordered as it forms a solid with the atoms or molecules now occupying specific lattice 
positions.    
     For NMR experiments the concept of spin temperature9 must be explained to access 
the thermodynamic interpretation of cross polarization.  The spin-lattice relaxation time 
T1 has been defined as the time constant for the spin system to come into equilibrium 
with the lattice.  The time constant T2 roughly measures the time required for a spin 
system to come into some sort of internal quasi-equilibrium.  Such quasi-equilibrium 
states may have energy-level populations very different from what they would be at the 
temperature of the lattice, but they ultimately return to the true equilibrium by spin-lattice 
transfer of energy.  In the case of strong coupling between the spins, such as the dipolar 
interaction in solids, a spin temperature, T, different from the lattice temperature can be 
defined when T2 << T1.  This temperature, defined through a Boltzmann factor, is nothing 
more than a description of relative populations of energy levels10.  These temperatures, 
because they are related to Boltzmann factors, can then be used to give the probabilities 
of occupation of energy levels, allowing the calculation of physical properties as shown 
in Appendix II, when the system exhibits that spin temperature.    
     The cross-polarization experiment begins with the I magnetization, M0, at equilibrium 
aligned with the static magnetic induction (which defines the Z axis) at the lattice 
temperature, TL.  For all practical purposes, there exists no net magnetization of the S 
spins (due to a small magnetogyric ratio and a long spin-lattice relaxation time), so it can 
be considered to be infinitely hot.  Additionally, since the projection of the I 
magnetization in the X-Y plane is zero, the rotating-frame temperature of the I spins is 
also effectively infinite.  (The absence of net magnetization in the X-Y plane is the 
random phase approximation in statistical mechanics.  Alternatively, in quantum 
mechanics, the absence is due to the uncertainty principle of quantum mechanics, which 
does not allow the simultaneous measurement of all three components of the angular 
momentum.)  After the ninety-degree pulse on the I spins and spin locking, the rotating-
frame spin temperature, T, of the I spins is lowered to some value that depends on the 
thermal equilibrium magnetization, M0, and the strength of the applied radiofrequency 
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induction that locks it (vide infra).  The spin temperature of the I spins is reflective of the 
order in the I-spin manifold that is temporary.   
     In the high temperature approximation11, in which the thermal energy given by the 
product of the Boltzmann constant with the temperature (kT) is greater than the 
separation of the magnetic energy levels, the magnetization, M0 , displays a Curie law 
behavior.  Following Slichter12, this is shown in Appendix II.  The magnetization is 
directly proportional to the magnetic induction B and inversely proportional to the 
temperature T,  
 

                                                   
I

I T
CBM =

_

                (6) 

 
where C is the Curie Constant.  Thus, specification of the temperature in a given 
magnetic induction is equivalent to specifying the magnetization and vice versa. 
     The initial I-spin magnetization, M0, at thermal equilibrium with the lattice parallel to 
the large static laboratory magnetic induction is the same magnetization which is spin-
locked after the ninety degree I-spin rf pulse.  The much smaller magnetic induction of 
the spin-lock rf pulse requires a much lower spin temperature due to the Curie law.   
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0
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So the final spin temperature is much colder than the initial temperature of the I spins at 
equilibrium in the static magnetic field.  A simple calculation shows how effective this is 
at lowering the spin temperature.  The lattice temperature is generally around 300 K.  In a 
modern spectrometer, a typical magnetic induction, B0, corresponds to a frequency of 500 
MHz.  The magnitude of a typical rf induction may correspond to a frequency of 80 kHz.  
Use of these values in the equation shows that, immediately after the ninety-degree pulse, 
the I spins are in a state of quasi-equilibrium corresponding to a temperature of about 
0.05 K.  This is an extremely cold system.  Such a cold system should easily receive 
energy from a hotter system if placed in thermal contact with it. 
     Physically, the spin locking of the I-spin magnetization lowers the spin temperature of 
the I spins and provides I-spin magnetization (order) in the X-Y plane.  At this point, the 
S spins are hot with no order in the X-Y plane.  Thermal contact between the cold I spins 
and the hot S spins is made by applying a simultaneous rf pulse to the S spin system 
while the I spins are spin locked.  Matching the Hartman-Hahn condition with these 
simultaneous rf pulses on both spin systems provides efficient thermal contact through 
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the flip-flop term of the dipolar interaction13.  As the I spins warm, the S spins cool, 
generating S-spin magnetization in the X-Y plane aligned along the applied S rf 
induction.  The I-spin rf pulse may be left on for decoupling as the S-spin signal is 
acquired. 
 
 
Cross-polarization Enhancement 
 
     The transfer of energy from the hot S spins to the cold I spins, with consequent 
transfer of order from the I spins to the Spins, does not occur instantaneously.  Following 
Mehring14, assuming that the S spins are hot, i.e., the S spins have a zero inverse 
temperature 1/TS at t=0 (the beginning of the Hartmann-Hahn match) and neglecting 
spin-lattice relaxation, the I and S spins approach the same inverse temperature, 1/Tf , 
exponentially 
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where TIS is the time constant for the exponential approach to the same final inverse 
temperature.  Assuming energy conservation during this process, the final temperature 
can be estimated: 
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SI rfSrfI HH γγ = and NI, the 

number of abundant I spins, being much, much larger than NS, the number of rare spins, 
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initial temperature can be plugged into the equation for the magnetization to give 
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Since ε is small, the S spin magnetization can theoretically be enhanced by a factor of 

S

I
γ

γ .  For example, for a system of carbons and protons, the theoretical prediction of 

the enhancement of the carbon magnetization under ideal conditions and with no 
relaxation is 3.98, almost a factor of 4. 
 
 
Experimental Results 
 
     As a practical example, the effect of cross polarization from abundant protons to the 
1.1% naturally abundant 13C is shown below in the single-scan spectra below from a 
static sample of adamantane.  The upfield methine resonance at 29.46 ppm is enhanced in 
the cross-polarization spectrum by a factor of 3.9 relative to the single ninety-degree 
pulse spectrum.  In both spectra, 1H decoupling was applied.  The enhancement in the 
single scan is very close to the theoretical maximum calculated above. 
      
 

13C NMR
Adamantane
Static Sample

50 45 40 35 30 25 20

PPM

With CP

Single 90   Pulse0
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     Additional enhancement of the 13C signal relative to direct 13C excitation is obtained 
when acquiring multiple scans in a given amount of time.  The abundant spin system 
typically has a much shorter spin-lattice relaxation time as compared to the rare spin 
species.  Since the cross-polarization experiment can be repeated on the basis of the spin-
lattice relaxation rate of the abundant spin species, typically more scans can be acquired 
in a given time relative to the number of scans acquired with direct excitation of the rare 
spin species.  Total enhancements on the order of 20 can be obtained in many cases.  As a 
result, cross polarization is a widely used technique. 
     Cross polarization from the abundant I spins to the rare S spins requires matching the 
Hartmann-Hahn condition

rfrf SI ωω = , where ωirf= γιBrfi  and γi is the magnetogyric ratio 

for the ith nucleus.   Simply adjusting the ninety-degree pulse widths of both the I and S 
spins to the same numerical value insures that one is at, or at least very close to, the 
necessary Hartmann-Hahn matching condition for the I-S cross polarization.  This is 
easily seen by realizing that the flip angle θ is simply ωtp, where tp is the pulse width.  If 
the flip angle is the same for both I and S spins when using the same pulse width, 
then

rfrf SI ωω = .    

     As an example of matching the Hartmann-Hahn condition for 1H-13C cross-
polarization, the downfield methylene peak at 38.3 ppm of a static sample of adamantane 
has been repeatedly plotted with the same vertical scaling as a function of the 13C rf 
power level used during the contact time for the match while the 1H rf power level 
remains constant.  The plot begins with highest power to the left-hand side, reduced in 
steps of 0.2 dB.  The point of maximum signal is the point nearest the Hartmann-Hahn 
matching condition. 
  

13C CP
Methylene Peak
Adamantane
Static Sample

13C Power Level
Increment 0.2 dB

High Power Low Power

13C RF, dB  
 
     Thus far, the theoretical description given and the experimental results shown are for 
cross polarization with static samples.  However, what is probably the most commonly 
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used cross-polarization experiment combines the technique with MAS to remove 
chemical-shift dispersion due to anisotropic interactions to provide a high-resolution 
solid-state spectrum.  Since MAS can also average the heteronuclear dipolar coupling, 
MAS has some effect upon the cross-polarization experiment.  Indeed this effect of the 
spinning on the cross-polarization process can be seen below in the plot for the methylene 
peak of adamantane as a function of the 13C rf power when spinning the sample at a 
relatively modest speed of 3 kHz.  The modulation of the peak amplitudes due to the 
influence of the MAS on the heteronuclear dipolar coupling is readily evident in this plot.  
The additional narrowing of the resonance line with the MAS is also noticeable.  
However most rigid solids require substantially faster spin rates than 3 kHz to observe the 
modulation. 
 

13C CP/MAS
Adamantane
RO = 3 kHz

13C Power Level
Increment 0.2 dB

High Power Low Power

13C RF, dB  
 
     In the earlier discussion on inverse spin temperatures as given by Equations 9 and 10, 
no mechanism for relaxation of the I spins or the S spins was included.  The general 
solution14 for such a model is too complicated to be useful and has rarely been used in 
practice.  Usually simplifying assumptions are made.  Using T1ρI as the time constant for 
I-spin relaxation under the spin-locking rf induction, T1ρS as the time constant for S-spin 

relaxation under the spin-locking rf induction, and assuming that 0
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coupled differential equations can be solved14 to give the intensity of S-spin 
magnetization M(t) as 
 

                 






 −











−+

=
+− )()(

11

0 11

1

)( SISI T
t

T
t

T
t

I

IS

S

IS

ee

T

T

T

T

M
tM ρρ

ρρ

   .                (15) 



 12

Use of equation 15 in variable contact time measurements often requires additional 
experiments to separately measure the additional quantities such as the S-spin rotating 

frame relaxation time, T1ρs.  However, with the further assumption that 0
1

≈
S

IS
T

T
ρ

, this 

reduces to one of the more commonly used solutions with which to fit variable contact 
time experiments 
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     The behavior of the intensity of both the methylene and methine resonances in a static 
sample of adamantane as a function of contact time is identical.  This is consistent with 
the random isotropic motion of the adamantane molecule in the plastic crystal at ambient 
temperature averaging out the intramolecular dipolar interaction and the intermolecular 
dipolar interaction providing the cross polarization.  Otherwise, the two protons on the 
methylene should provide a faster increase in intensity relative to the singly protonated 
methine. 
     As a distinctly different example, the 13C magnetization, M(t), for the carbonyl of 
glycine is plotted as a function of the Hartmann-Hahn contact time in a 13C CP/MAS 
experiment.  The rf field strength is 62.5 kHz.  The fitted equation 16 yields a TIS of 0.52 
ms and a 1H T1ρ of 54 ms. 
 

13C CP/MAS
Glycine
Variable Contact Time

2 4 6 8 10 12 14 16 18
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0.0

Arbitrary Units

Carbonyl Resonance

 
 
     It should be noted that the time constant TIS for this polarization transfer to the non-
protonated carbonyl is much longer than the approximate15 TIS of 0.08 ms for the 
protonated methylene of glycine.  The slow increase in intensity of the carbonyl relative 
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to that of the methylene carbon of glycine can easily be seen in the three 13C CP/MAS 
spectra with contact times of 0.5, 1, and 5 ms shown below. 
 
 

13C CP/MAS
Glycine

5 ms

1 ms

0.5 ms

300 250 200 150 100 50 0 -50
PPM

Contact
Time

 
 
     The increase in intensity is strongly dependent upon the local environment of the 
nucleus in the molecule.  As shown, the non-protonated carbonyl reaches its maximum 
intensity more slowly than the protonated methylene carbon.  However, the decays of the 
variable contact curves for each carbon resonance are governed by the single proton T1ρH.  
The protons show strong homonculear dipolar coupling in the molecule and, hence, show 
only one relaxation time constant.  The buildup of S-spin magnetization on short time 
scales is very sensitive to the immediate environment of the nucleus in the molecule and 
might be described as a "microscopic" view of the immediate local surroundings of the 
nucleus.  The decay of the S-spin magnetization on longer time scales due to the 1H T1ρ 
reflects more on the molecule as a whole due to strong homonuclear dipolar interactions 
and provides more of a "macroscopic" view of the molecule. 
     This is important for the acquisition of quantitative, or perhaps what is more precisely 
called semi-quantitative, data.  The maximum signal for each peak is reached roughly 
around 3TIS, which is likely to differ substantially for various sites within a molecule.  It 
is necessary to ensure an adequately long contact time, greater than three times the 
longest TIS, for quantification.  This quantification is gained at the expense of some 
deterioration in the signal-to-noise ratio.  When MAS is also used, it is necessary to 
include the areas of any spinning sidebands with the resonance of interest to get the total 
area.  This is shown below in a 13C CP/MAS spectrum of glycine acquired with a sample 
rotation rate of 5 kHz.  It should be noted that sideband-suppression techniques such as 
TOSS16 do not refocus the sideband intensity into the center band.  In the limit of high 
spinning speeds and low sideband intensity, TOSS loses a contribution to the isotropic 
peak of about half of the combined area of the sidebands.  As a result, techniques such as 
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TOSS are not quantitative, becoming even less quantitative for situations in which the 
chemical shift anisotropies are significantly different. 

13C CP/MAS
Glycine

300 250 200 150 100 50 0 -50

PPM

Integration
0.068 0.807 0.115 1.000

 
 
     The important spin-relaxation parameters in the cross-polarization experiment are the 
spin-lattice relaxation times in the rotating frames (T1ρ) of both the I and S spins.  If the I-
spin T1ρ is too short, then the I spins cannot be spin-locked in the rf field and thus cooled 
down.  Of course, the I-spin T1ρ will also be too short if the I-spin spin-lattice relaxation 
time T1 is too short, as T1ρ cannot be greater than T1.  The I-spins will have equilibrated 
back to the original spin temperature before polarization transfer to the S spins can occur.  
In other words, the polarization transfer takes time to occur.  Cross polarization occurs 
only if the entire spin system has reasonably long relaxation times.   
     The role of relaxation times in quantification becomes very important, especially for 
quantification of mixtures or polymers which may have both crystalline and amorphous 
domains exhibiting different relaxation parameters.  In these cases, relaxation parameters 
can vary from resonance to resonance.  It is then necessary to analyze the complete 
magnetization-evolution curve as a function of the contact time when using cross 
polarization as a quantitative tool17.  In this case, the total magnetization, M0, for each 
resonance can be extracted by fitting the equation for the magnetization as a function of 
the contact time to the experimental data.  However, as pointed out17, it is necessary to 
have an appropriate model which accurately describes the contact time behavior for each 
resonance. 
     The difficulty with short relaxation times occurs for alpha glycine18 when using rf 
fields of 62.5 kHz.  As the temperature of the sample is lowered from ambient 
temperature to 213 K, the 13C CP/MAS signal simply disappears, as shown below.  In this 
case, the 1H T1 of 0.25 s at ambient temperature increases to 23 s at 213 K while the 1H 
T1ρ of 54 ms at ambient temperature shortens to 0.6 ms at 213 K.  With a Hartmann-Hahn 
contact time of 3 ms, the 13C CP/MAS signal from glycine is lost.  This shortened 1H T1ρ 
results from the hindered rotation of the -NH3 group.  At this temperature, it provides an 



 15

effective relaxation mechanism in the kHz regime.  In short, as shown here for glycine 
and earlier for adamantane, molecular motion plays an important role in cross-
polarization. 
 

13C CP/MAS
Alpha Glycine
RO = 5 kHz

296 K

213 K

300 250 200 150 100 50 0 -50

PPM  
 
     Cross-polarization signals can still often be obtained in such situations like that of 
glycine.  However, this usually requires a change in the data-acquisition conditions.  For 
glycine, a much shorter contact time, on the order of tens or hundreds of µs, can be used 
for the polarization transfer contact time.  In addition, the use of a higher rf field strength, 
such that the T1ρ is changed, may also help. 
      
 
An Overview 
 
     The thermodynamic analysis given for the cross-polarization experiment1b followed 
the analysis of earlier double-resonance experiments19 in solids in which the S resonance, 
difficult to observe directly, is detected indirectly through its effect on the I spins.  Such 
analyses are ultimately based on Redfield's concept20 of a spin temperature in the rotating 
frame of reference.  Slichter12 refers to Redfield's paper as "one of the most important 
papers ever written on magnetic resonance."  
     The combination of MAS with cross polarization was addressed early21.  At that time, 
the effect of MAS on cross polarization for most rigid solid materials seemed negligible.    
While MAS was effective at narrowing the inhomogeneously broadened chemical shift 
dispersions brought on by substantial chemical-shielding anisotropies, most spin rates 
were significantly smaller than the homogeneously broadened homonuclear dipolar 
linewidths of the protons.  The modulation of the heteronuclear dipolar coupling by 
homonuclear dipolar fluctuations is simply much larger than the coherent modulation by 
the relatively slow sample spinning.  As technology provided ever faster MAS spin rates, 
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the theory of CP/MAS was revisited22,23 to accommodate "fast spinning."  For rapid 
MAS, the most efficient transfer is usually observed under the modified Hartman-Hahn 
condition rrfIrfS nυωω =− .  That is, transfer is most efficient at a multiple of the sample 

spin rate νr, usually .2,1 ±±=n   However, this presents an experimental challenge.  The 
Hartmann-Hahn matching condition becomes very narrow and is susceptible to both rf 
inhomogeneities and instability in the spinning speed.  Techniques such as variable-
amplitude cross polarization24 were developed to address concerns. 
     Limitations of this classic thermodynamic description of cross polarization were 
evident early on when strong transient oscillations were observed in the 13C 
magnetization as a function of the contact time in a ferrocene single crystal25.  In this 
case, there is a dominant dipolar interaction, which causes a deviation from the typical 
Gaussian line shapes in solids and leads to an oscillatory polarization transfer.  Indeed, 
deviations from the exponential-rise-exponential decay model of polarization transfer as 
given by equation 16 were reported26 for the α-carbon of polycrystalline glycine.  This 
deviation for the methylene resonance in polycrystalline glycine in a variable contact 
time experiment is shown below.  This contrasts with the good fit of equation 16 to the 
carbonyl resonance for glycine shown in the previous section.  In these cases where 
equation 16 fails to adequately fit the observed data, variations of the I-I*-S model27 are 
used to describe a dominant dipolar coupling to the S spin which leads to oscillatory 
behavior in the polarization transfer that is gradually damped as spin diffusion occurs 
among the abundant I spins.  
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     Citing concerns of "weakness" in the spin-temperature approach, a theory based on the 
quantum Liouville equation28 has been proposed for CP/MAS.  The specific concerns 
with the thermodynamic approach involved "no basis for an equilibrium to be obtained 
and thus no basis for assuming a thermal distribution" (as the spin system shows little or 
no relaxation during the experiment) and the fact that the Hamiltonian is still time-
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dependent if MAS is performed (which questions the thermal equilibrium in the doubly-
rotating frame). 
     Numerous examples of variable contact time experiments and analyses to study 
magnetization transfer of particular functionalities in various materials are in a recent 
review article27.  In particular, many materials science applications are given.  Such 
kinetic studies (which depend strongly upon dipolar interactions and, hence, on the I-S 
distance for nuclei like 1H and 13C) provide information on spatial orientation, mobility, 
separation of domains, and differentiation between protonated and non-protonated 
carbons.  Other recent studies included amino acids29 and coal30. 
     The cross-polarization experiment using the heteronuclear dipolar interaction is 
widely used in solid-state NMR, especially for spin-½ nuclei with polarization transfer 
from abundant 1H to enhance the sensitivity of such rare spin species as 13C, 29Si, and 
15N.  In the solid state, it is also possible to cross polarize to or from half-integer 
quadrupolar nuclei28.  However, such experiments are typically difficult due to the 
challenges presented by the spin dynamics involved in spin locking and polarization 
transfer via the quadrupolar interaction.  This difficulty is exacerbated with the addition 
of MAS.  These difficulties arise in polycrystalline materials from the polarization 
transfer being strongly anisotropic with respect to crystallite orientation in the magnetic 
field.  The polarization transfer also depends upon the relative size of the quadrupolar 
coupling constants, the amplitudes of the rf inductions, the spinning speed, and the 
resonance offsets.  The poor polarization transfer efficiency, as compared with that 
achievable for spin-½ nuclei, means that cross polarization for quadrupolar nuclei is 
primarily a means of spectral editing as opposed to a means of signal enhancement.   
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Appendix I 
 
     The magnetic field at any point in space can be represented in terms of the magnetic 

vector potential
→
A , which is determined by the current density )(

→→
rJ .  The magnetic 

induction is the curl of the vector potential,
→→→

×∇= AB .  This results from one of 

Maxwell's four equations requiring the divergence of 
→
B  to be zero and from vector 

analysis where the divergence of the curl of any vector is zero.   
     Another of Maxwell's equations relates the magnetic field to the current density 

by
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important point is that the magnetic field of a distant circuit does not depend upon its 
detailed geometry but can be expressed in terms of its magnetic moment.   

     The Zeeman energy of a second magnetic moment '
→
m  interacting with this magnetic 

field is )('
→→→

⋅−= rBmE , as given earlier in equation 2,  
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     To understand the origin of the nomenclature of this "magnetic dipolar interaction," it 
is enlightening to explicitly compare this result with that derived for an electric dipole.  In 
the case of an electric dipole, the necessary mathematics are more straightforward.   
     The form for the electrical dipolar interaction is derived by determining the field due 
to the electric dipole at some point P, as shown below.  The field is the gradient of the 

scalar potential VE
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     Expressing the potential in terms of r yields 
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     The energy of a second dipole '
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m  interacting with this field is given by
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Since the magnetic interaction given in equation (2) has the same functional form as that 
of the electrical dipole interaction, equation (2) is usually referred to as the magnetic 
dipole interaction. 
 
 
Appendix II 
 
     Consider a spin system in thermal equilibrium with a reservoir of temperature T.  The 
various states n of the total system are occupied with fractional probabilities pn given by 
the Boltzmann factor 
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where Z is the partition function, k is Boltzmann's constant, and En is the energy of the 
state.  The partition function Z can be calculated11a without solving for the energies and 
eigenvalues of the Hamiltonian by expanding the partition function in powers of 1/T.  In 
other words,  
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Expanding the exponential in a power series,  
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in which the Tr{H} = 0 for both the Zeeman and dipolar interactions.  The average 

energy 
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E and the magnetization 
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zM are given by 
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     In the high temperature limit11b with the magnetic energy levels being much smaller 
than kT, then terms of 1/(kT)2 and higher can be ignored to yield 
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C , the Curie constant, and 

→→
⋅−= IBH γ  with 

→
B being the 

magnetic induction.  This high temperature approximation is typically valid for spin-½ 
nuclei above 4 K.  
  
 


