Cross-polarization Dynamics

I ntroduction

Low(er) gammanuclei present achallenge to the NMR spectroscopist due to their
small magnetogyric ratio, often low natural abundance, and typically long spin-lattice
relaxation times. All three conspire to yield low sensitivity. The cross-polarization®
experiment overcomes these challenges to offer high-sensitivity spectra of natural-
abundance rare spins in the solid state by providing polarization transfer from abundant |
pins.

The purpose here is to explain how the cross-polarization technique achieves this
transfer. In particular, the origin of the dipolar Hamiltonian and itsrolein the
polarization transfer is described. Signal enhancement is described in terms of a
thermodynamic model, which has proven very useful. However, some limitations of the
model are discussed. Finaly, the dynamics of the process are illustrated with the
experimental results from the *H-*3C cross polarization of adamantane and glycine.
Consequences of experimental choices, such as Hartmann-Hahn? contact times and
magic-angle spinning (MAS)®*, are shown. In particular, the issue of quantification is
addressed.

The Dipolar Hamiltonian

The classical dipolar Hamiltonian derives from the calculation of the magnetic field of
anuclear spin and the interaction energy of a second nucleus with thisfield. The usua
approach to this problem, often found in basic electricity and magnetism physics texts®
and in some NMR texts’, is to calculate the magnetic field due to a "distant circuit.”

Such an gpproach is reasonable, given the typical nuclear diameters relative to the bond
lengths between neighboring nuclei. The typical diameter of anucleusison the order of
10" m, whereas typica bond lengths are of the order of 10™° m. The five orders of
magnitude difference in length scale between the nuclear separation and the "size" of the
nuclei does fit the model of the first nucleus as a "distant circuit." This model shows that
the magnetic field of adistant circuit does not depend upon its detailed geometry. It only

depends upon its magnetic moment, m. Asaresult, this calculation of amagnetic field
due to a"distant circuit" describes the magnetic field due to a nuclear dipole very
accurately.

The details of the calculation of the field are given below in Appendix |. The resulting
magnetic field due to a"distant circuit” is
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The energy of a second magnetic moment m' interacti ng with this magnetic field is given

by E=- mB , which givesthe classical interaction energy
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Thisisaconvenient point for a brief discussion of units. There are two systemsin
common use to describe electromagnetic quantities, the Systeme Internationae (SI) of
units and the gaussian (cgs) system.

In SI (mks) units, there is adistinction to the unit of the magnetic field and the

)

magnetic induction. The quality that actsdirectly is the magnetic induction, B , Whereas
the magnetic field, H , iIsthe directly measured quantity in practica electrical
measurements. The magnetic field, H , has units of amp/m. In S, it is necessary to

multiply the magnetic field, H , by the permeability of free space, 14, (because the space
between the nuclei is considered to be free space) to determine the magnetic induction

B at the site of adipole. The permeability has units of webers/ amp m. The magnetic

Induction, B , is expressed in webers/m?, also called teslas.  The magnetic moment m
has units of amp m*.
In the gaussian (cgs) system, magnetic induction has units of gauss; and units are

chosen such that in free space Band H are the same. However, the unit of magnetic
field in the gaussian system is called the oersted.

In NMR spectroscopy it is usua to express energy differences by the equivaent
frequency, given asv in Hertz or as o in radians/sec. The two units are related by the
simple formula «. = 27v . These frequencies are related to equivlalent energies by
Planck's relation, whether in Sl or the gaussian system. In particular, the frequency is
converted to the energy by multiplication by Planck's constant, h, or by Planck's constant

divided by 2x, % e for the circular frequency and radia frequency, respectively.
For conversion to the quantum mechanical problem, one replaces the classical

magnetic moment with the quantum mechanical operator for it: m= ZE I . With this
s

change, the quantum mechanical dipolar Hamiltonian is written as



Following Abragam’, with 6 and ¢ as the polar coordinates of the vector r and by
using the raising and lowering operators I. = Ix + ly, the dipolar Hamiltonian can be
rewritten in terms of what is commonly called the "dipolar a phabet”
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The reason for writing the dipolar Hamiltonian in thisway is that it exposes how
different parts of the Hamiltonian connect the various angular momentum levels. Of
particular importance are the transitions in high magnetic field enabled by each term.

A Am; =0 Am, =0 A(m; +m) =0 (5)
B Am; =+1 Am; =-/+1 A(m; +m) =0
0 1
C Am; = 1 Am, = 0 A(m; +m,) =1
0 -1
D Am,; = 1 Am, = 0 A(m; +m)=-1
E Am, =1 Am, =1 A(m; +m ) =2
F Am; =-1 Am, =-1 A(m; +m,) =-2

For identical spins, i.e., those subject to homonuclear dipolar coupling, the first two
terms, A and B, describe the secular part of the interaction since they commute with the
Zeeman Hamiltonian and thus will have simultaneous el genstates with the Zeeman
Hamiltonian. For inequivalent spins, i.e., those subject to heteronuclear dipolar coupling,
only the first term A commutes with the Zeeman Hamiltonian. In sufficiently high
magnetic field these two terms are all that are required to determine the energy-level
scheme for the system through first order and are often referred to as the "truncated"
dipolar interactions’.

The B term represents a process in which there exists a simultaneous flip of two spins
in the opposite directions and is usually referred to as the "flip-flop" term. As mentioned,
in the case of heteronuclear dipolar coupling, this term does not commute with the
Zeeman Hamiltonian and is not included in the dipolar Hamiltonian. However, itis
precisely this term that becomes important in the rotating frame and transfers polarization
in the cross-polarization experiment. Kubo and Tomita® in their classic paper on the
guantum mechanical treatment of NMR show that this term is better at energy transfer
rather than at relaxation.

Another way to say thisisto realize that the A and B termsyield energy differences
corresponding to a frequency wo for identical spins. The C, D, E, and F termsyield
energy differences corresponding to frequencies of 0 and 2 wo. These last four terms are
not important for consideration of transfer and are simply neglected in the development
of cross-polarization transfer. That is, the A and B terms comprise the truncated dipolar
Hamiltonian used in the theoretical development of cross polarization.



Cross-polarization M echanism

The cross-polarization mechanism can be best explained and is mostly used in systems
having abundant | spins with a higher magnetogyric ratio and rare S spins with alower
magnetogyric ratio. The most common experiment transfers energy from *H, asthe |
spins, to °C, asthe S spins.

The pulse sequence for cross polarization from the abundant | spins to the rare S spins
begins with a ninety-degree pulse on the | spins. The phases of the radiofrequency (rf)
pulses are defined relative to the axes of the rotating frames of the nuclei. If the ninety-
degree pulse applied to the | spins has arf phase of X, then the I-spin magnetization ends
up aong the Y axisin the rotating frame at the end of the pulse, presuming that the
magnetogyric ratio of the | spin ispositive, or along the -Y axis, if the magnetogyric ratio
Isnegative. The phase of the I-spin rf irradiation is then quickly switched to the Y phase
to lock the magnetization along this axis while the S-spin rf irradiation is turned on
simultaneously. During the simultaneous rf irradiation of both | and S spins, polarization
is transferred from the abundant | spinsto the rare S spins, creating S magnetization by
draining polarization away from the | spins. Finaly, at some later time, the S-spin rf
irradiation is turned off and the transverse S-spin magnetization is measured while the |-
spin rf irradiation remains on during the acquisition to provide decoupling.
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Quantum mechanics provides a description of the mechanism for cross polarization.
One may think of the interactions in terms of Zeeman interactions. For the Zeeman
interaction, the spin's energy levels are given by the dot product of the magnetic moment
with the magnetic induction. It is not possible to have the same energy levels for nuclei
with differing magnetogyric ratios in only one magnetic induction, such as the static
magnetic field in the laboratory. The magnetogyric ratios of the | and S spins are
constants. However, the energy levels for two differing nuclei can be made the same if




two magnetic inductions are used. In this case, the two magnetic inductions are the
rotating components of the radiofrequency radiation applied to the | and S spins. By
matching the Hartmann-Hahn condition «, =« , the magnetic inductions from the rf

pulses are of such a magnitude that the | and S spins have a common energy-level scheme
in the rotating frame. That is, the energy levelsfor the | and S spins are matched in the
rotating frames of the two different nuclei. The normally forbidden "flip-flop" transitions
of the B term in the heteronuclear dipolar interaction are active in the rotating frame
under these conditions, producing "alowed" simultaneous spin flipsof the | and S spins
with exchange of energy.

An alternative description of the mechanism of cross polarization can be given in
terms of athermodynamic model. Thermodynamics can be applied in the rotating frame
since the Hamiltonian is effectively time-independent.

Thermodynamics applies to popul ations of energy states. Generaly, as the
temperature is lowered, states with lower energy become more popul ated compared to
higher-energy states. This can be, in asimple way, thought of as an increase in order of
the system. Thisis seen asagas condensesinto aliquid with an increase in local order as
the temperature islowered. Below the freezing point, the liquid becomes even more
ordered asit forms a solid with the atoms or molecules now occupying specific lattice
positions.

For NM R experiments the concept of spin temperature® must be explained to access
the thermodynamic interpretation of cross polarization. The spin-lattice relaxation time
T1 has been defined as the time constant for the spin system to come into equilibrium
with the lattice. The time constant T, roughly measures the time required for a spin
system to come into some sort of interna quasi-equilibrium. Such quasi-equilibrium
states may have energy-level populations very different from what they would be at the
temperature of the lattice, but they ultimately return to the true equilibrium by spin-lattice
transfer of energy. In the case of strong coupling between the spins, such as the dipolar
Interaction in solids, a spin temperature, T, different from the lattice temperature can be
defined when T, << T3. This temperature, defined through a Boltzmann factor, is nothing
more than a description of relative populations of energy levels™®. These temperatures,
because they are related to Boltzmann factors, can then be used to give the probabilities
of occupation of energy levels, allowing the calculation of physical properties as shown
in Appendix II, when the system exhibits that spin temperature.

The cross-polarization experiment begins with the I magnetization, M, at equilibrium
aligned with the static magnetic induction (which defines the Z axis) at the lattice
temperature, T,. For all practical purposes, there exists no net magnetization of the S
spins (due to a small magnetogyric ratio and along spin-lattice relaxation time), so it can
be considered to be infinitely hot. Additionally, since the projection of the |
magnetization in the X-Y planeis zero, the rotating-frame temperature of the | spinsis
also effectively infinite. (The absence of net magnetization in the X-Y planeisthe
random phase approximation in statistical mechanics. Alternatively, in quantum
mechanics, the absence is due to the uncertainty principle of quantum mechanics, which
does not allow the simultaneous measurement of all three components of the angular
momentum.) After the ninety-degree pulse on the | spins and spin locking, the rotating-
frame spin temperature, T, of the | spinsis lowered to some val ue that depends on the
thermal equilibrium magnetization, Mo, and the strength of the applied radiofrequency



induction that locksit (vide infra). The spin temperature of the | spinsis reflective of the
order in the I-spin manifold that is temporary.

In the high temperature approximation™, in which the thermal energy given by the
product of the Boltzmann constant with the temperature (kT) is greater than the
separation of the magnetic energy levels, the magnetization, My, displays aCurie law
behavior. Following Slichter™?, thisis shown in Appendix II. The magnetization is
directly proportiona to the magnetic induction B and inversely proportional to the
temperature T,

M, =CBz (6)

where Cis the Curie Constant. Thus, specification of the temperature in agiven
magnetic induction is equivaent to specifying the magnetization and vice versa.

The initial 1-spin magnetization, Mo, at thermal equilibrium with the lattice parallel to
the large static laboratory magnetic induction is the same magnetization which is spin-
locked after the ninety degree I-spin rf pulse. The much smaller magnetic induction of
the spin-lock rf pulse requires amuch lower spin temperature due to the Curie law.
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So the final spin temperature is much colder than the initial temperature of the | spins at
equilibrium in the static magnetic field. A simple calculation shows how effective thisis
a lowering the spin temperature. The |attice temperature is generally around 300 K. Ina
modern spectrometer, atypica magnetic induction, By, corresponds to a frequency of 500
MHz. The magnitude of atypical rf induction may correspond to a frequency of 80 kHz.
Use of these values in the equation shows that, immediately after the ninety-degree pulse,
the | spinsare in a state of quasi-equilibrium corresponding to atemperature of about
0.05 K. Thisisan extremely cold system. Such acold system should easily receive
energy from a hotter system if placed in thermal contact with it.

Physically, the spin locking of the I-spin magnetization lowers the spin temperature of
the | spins and provides I-spin magnetization (order) in the X-Y plane. At this point, the
S spins are hot with no order in the X-Y plane. Thermal contact between the cold | spins
and the hot S spins is made by applying a simultaneous rf pulse to the S spin system
while the | spins are spin locked. Matching the Hartman-Hahn condition with these
simultaneous rf pulses on both spin systems provides efficient thermal contact through



the flip-flop term of the dipolar interaction®. Asthe | spinswarm, the S spins cool,
generating S-spin magnetization in the X-Y plane aligned along the applied S rf
induction. The I-spin rf pulse may be left on for decoupling as the S-spin signal is
acquired.

Cross-polarization Enhancement

The transfer of energy from the hot S spinsto the cold | spins, with consequent
transfer of order from the | spins to the Spins, does not occur instantaneously. Following
Mehring™, assuming that the S spins are hot, i.e., the S spins have a zero inverse
temperature 1/Tsat t=0 (the beginning of the Hartmann-Hahn match) and neglecting

spin-lattice relaxation, the | and S spins approach the same inverse temperature, 1/T; ,
exponentially
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where T;sis the time constant for the exponential approach to the same fina inverse
temperature. Assuming energy conservation during this process, the final temperature
can be estimated:

CI Br2fl + CSBerS CI Br2fl + CSBerS
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T, TS T, (1)
Assuming 1/Ts= 0, then
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where € = > With the Hartmann-Hahn condition y,H ; = ysH and N, the
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number of abundant | spins, being much, much larger than Ng, the number of rare spins,
then ¢ = % <<1. Thisexpression for the final temperature in terms of the
+
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initial temperature can be plugged into the equation for the magnetization to give
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Since ¢ issmall, the S spin magnetization can theoretically be enhanced by a factor of
% . For example, for a system of carbons and protons, the theoretical prediction of
S

the enhancement of the carbon magnetization under ideal conditions and with no
relaxation is 3.98, amost a factor of 4.

Experimental Results

As apractica example, the effect of cross polarization from abundant protons to the
1.1% naturally abundant **C is shown below in the single-scan spectra below from a
static sample of adamantane. The upfield methine resonance at 29.46 ppm is enhanced in
the cross-polarization spectrum by a factor of 3.9 relative to the single ninety-degree
pulse spectrum. In both spectra, “H decoupling was applied. The enhancement in the
single scan is very close to the theoretical maximum cal cul ated above.

13C NMR
Adamantane
Static Sample

With CP

Single 90° Pulse

50 45 40 35 30 25 20
PPM



Additional enhancement of the *3C signal relative to direct **C excitation is obtained
when acquiring multiple scansin a given amount of time. The abundant spin system
typically has a much shorter spin-lattice relaxation time as compared to the rare spin
species. Since the cross-polarization experiment can be repeated on the basis of the spin-
lattice relaxation rate of the abundant spin species, typically more scans can be acquired
in agiven time relative to the number of scans acquired with direct excitation of the rare
spin species. Total enhancements on the order of 20 can be obtained in many cases. Asa
result, cross polarization is awidely used technique.

Cross polarization from the abundant | spins to the rare S spins requires matching the
Hartmann-Hahn conditione, = ws , where ay= )Bri and yi is the magnetogyric ratio

for the i nucleus. Simply adjusting the ninety-degree pulse widths of both the | and S
spins to the same numerical value insures that one is at, or at least very close to, the
necessary Hartmann-Hahn matching condition for the I-S cross polarization. This is
easily seen by readlizing that the flip angle 8 is simply wtp, where t;, is the pulse width. 1f
the flip angle is the same for both | and S spins when using the same pulse width,
thenw, =w; .

As an example of matching the Hartmann-Hahn condition for H-*C cross-
polarization, the downfield methylene peak at 38.3 ppm of a static sample of adamantane
has been repeatedly plotted with the same vertical scaling as a function of the *C rf
power level used during the contact time for the match while the *H rf power level
remains constant. The plot begins with highest power to the left-hand side, reduced in
steps of 0.2 dB. The point of maximum signal is the point nearest the Hartmann-Hahn
matching condition.
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Thus far, the theoretical description given and the experimental results shown are for
cross polarization with static samples. However, what is probably the most commonly
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used cross-polarization experiment combines the technique with MAS to remove
chemical-shift dispersion due to anisotropic interactions to provide a high-resolution
solid-state spectrum. Since MAS can also average the heteronuclear dipolar coupling,
MAS has some effect upon the cross-polarization experiment. Indeed this effect of the
spinning on the cross-pol arization process can be seen below in the plot for the methylene
peak of adamantane as a function of the **C rf power when spinning the sample at a
relatively modest speed of 3 kHz. The modulation of the peak amplitudes due to the
influence of the MAS on the heteronuclear dipolar coupling is readily evident in this plot.
The additional narrowing of the resonance line with the MAS is also noticeable.

However most rigid solids require substantially faster spin rates than 3 kHz to observe the
modulation.

13C CP/MAS 13C Power Level
Adamantane Increment 0.2 dB
RO = 3 kHz
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In the earlier discussion on inverse spin temperatures as given by Equations 9 and 10,
no mechanism for relaxation of the | spins or the S spinswas included. The genera
solution™ for such amodel is too complicated to be useful and has rarely been used in
practice. Usually simplifying assumptions are made. Using T, asthe time constant for
I-spin relaxation under the spin-locking rf induction, T1,sas the time constant for S-spin

NS(ySBrfS)2
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coupled differential equations can be solved™ to give the intensity of S-spin
magnetization M(t) as

VO E— (e_(%“’) - e%s%vs)j . (15)

1+ TA - Ti
TlpS Tlpl

relaxation under the spin-locking rf induction, and assuming that =0, the
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Use of equation 15 in variable contact time measurements often requires additional
experiments to separately measure the additional quantities such as the S-spin rotating

frame relaxation time, T1,s. However, with the further assumption that T% =0, this
10S

reduces to one of the more commonly used solutions with which to fit variable contact
time experiments

M (¥4 ) !
M (t) = —O(e T g 's)j . (16)
1- TA
T,

The behavior of the intensity of both the methylene and methine resonances in a static
sample of adamantane as a function of contact timeisidentical. Thisis consistent with
the random isotropic motion of the adamantane molecule in the plastic crysta at ambient
temperature averaging out the intramolecular dipolar interaction and the intermolecul ar
dipolar interaction providing the cross polarization. Otherwise, the two protons on the
methylene should provide afaster increase in intensity relative to the singly protonated
methine.

As adistinctly different example, the *C magnetization, M(t), for the carbony! of
glycineisplotted as a function of the Hartmann-Hahn contact time in a**C CP/MAS

experiment. The rf field strength is 62.5 kHz. The fitted equation 16 yieldsaT,sof 0.52
msand a'H Ty, of 54 ms.

13C CP/MAS Carbonyl Resonance
Glycine
Variable Contact Time

Arbitrary Units

Contact Time, ms

It should be noted that the time constant T,s for this polarization transfer to the non-
protonated carbonyl is much longer than the approximate™ T,s of 0.08 ms for the
protonated methylene of glycine. The slow increase in intensity of the carbonyl relative
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to that of the methylene carbon of glycine can easily be seen in the three *C CP/MAS
spectrawith contact times of 0.5, 1, and 5 ms shown below.
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The increase in intensity is strongly dependent upon the local environment of the
nucleusin the molecule. As shown, the non-protonated carbonyl reaches its maximum
intensity more slowly than the protonated methylene carbon. However, the decays of the
variable contact curves for each carbon resonance are governed by the single proton T 1.
The protons show strong homonculear dipolar coupling in the molecule and, hence, show
only one relaxation time constant. The buildup of S-spin magnetization on short time
scalesis very sensitive to the immediate environment of the nucleus in the molecule and
might be described as a "microscopic” view of the immediate loca surroundings of the
nucleus. The decay of the S-spin magnetization on longer time scales due to the *H Ty,
reflects more on the molecule as awhole due to strong homonuclear dipolar interactions
and provides more of a "macroscopic” view of the molecule.

Thisisimportant for the acquisition of quantitative, or perhaps what is more precisely
called semi-quantitative, data. The maximum signal for each peak is reached roughly
around 3T,s, which islikely to differ substantially for various sites within amolecule. It
IS necessary to ensure an adequately long contact time, greater than three times the
longest Ts, for quantification. This quantification is gained at the expense of some
deterioration in the signal-to-noise ratio. When MAS isalso used, it is necessary to
include the areas of any spinning sidebands with the resonance of interest to get the total
area. Thisis shown below in a™C CP/MAS spectrum of glycine acquired with asample
rotation rate of 5 kHz. It should be noted that sideband-suppression techniques such as
TOSS" do not refocus the sideband intensity into the center band. In the limit of high
spinning speeds and low sideband intensity, TOSS loses a contribution to the isotropic
peak of about half of the combined area of the sidebands. As a result, techniques such as
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TOSS are not quantitative, becoming even less quantitative for situations in which the
chemical shift anisotropies are significantly different.

13C CP/MAS
Glycine
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The important spin-relaxation parametersin the cross-polarization experiment are the
spin-lattice relaxation times in the rotating frames (T1,) of both the | and S spins. If the I-
spin Ty, istoo short, then the | spins cannot be spin-locked in the rf field and thus cooled
down. Of course, the I-spin T4, will aso be too short if the I-spin spin-lattice rel axation
time T istoo short, as T1, cannot be greater than T1. The I-spins will have equilibrated
back to the original spin temperature before polarization transfer to the S spins can occur.
In other words, the polarization transfer takes time to occur. Cross polarization occurs
only if the entire spin system has reasonably long relaxation times.

The role of relaxation timesin quantification becomes very important, especialy for
quantification of mixtures or polymers which may have both crystalline and amorphous
domains exhibiting different relaxation parameters. In these cases, relaxation parameters
can vary from resonance to resonance. It isthen necessary to analyze the complete
magnetization-evolution curve as a function of the contact time when using cross
polarization as aquantitative tool . In this case, the total magnetization, Mo, for each
resonance can be extracted by fitting the equation for the magnetization as a function of
the contact time to the experimental data. However, as pointed out", it is necessary to
have an appropriate model which accurately describes the contact time behavior for each
resonance.

The difficulty with short relaxation times occurs for aphaglycine®® when using rf
fields of 62.5 kHz. Asthe temperature of the sampleislowered from ambient
temperature to 213 K, the **C CPIMAS signal simply disappears, as shown below. In this
case, the 'H T1 of 0.25 s at ambient temperature increases to 23 s at 213 K while the *H
T, of 54 ms at ambient temperature shortensto 0.6 msat 213 K. With aHartmann-Hahn
contact time of 3 ms, the *C CP/IMAS signal from glycineislost. This shortened 'H T,
results from the hindered rotation of the -NHz group. At this temperature, it provides an
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effective relaxation mechanism in the kHz regime. In short, as shown here for glycine
and earlier for adamantane, molecular motion plays an important role in cross-
polarization.

13C CP/MAS
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Cross-polarization signals can still often be obtained in such situations like that of
glycine. However, this usually requires a change in the data-acquisition conditions. For
glycine, amuch shorter contact time, on the order of tens or hundreds of s, can be used

for the polarization transfer contact time. In addition, the use of a higher rf field strength,
such that the T, is changed, may also help.

An Overview

The thermodynamic analysis given for the cross-polarization experiment® foll owed
the analysis of earlier double-resonance experiments™ in solids in which the S resonance,
difficult to observe directly, is detected indirectly through its effect on the | spins. Such
analyses are ultimately based on Redfield's concept® of a spin temperature in the rotating
frame of reference. Slichter™ refers to Redfield's paper as "one of the most important
papers ever written on magnetic resonance.”

The combination of MAS with cross polarization was addressed early”’. At that time,
the effect of MAS on cross polarization for most rigid solid materials seemed negligible.
While MAS was effective at narrowing the inhomogeneously broadened chemical shift
dispersions brought on by substantial chemical-shielding anisotropies, most spin rates
were significantly smaller than the homogeneoudy broadened homonuclear dipolar
linewidths of the protons. The modulation of the heteronuclear dipolar coupling by
homonuclear dipolar fluctuations is simply much larger than the coherent modul ation by
the relatively slow sample spinning. As technology provided ever faster MAS spin rates,
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the theory of CPIMAS was revisited”? to accommodate "fast spinning." For rapid
MAS, the most efficient transfer is usually observed under the modified Hartman-Hahn
condition w,s —w, =nu,. Thatis, transfer is most efficient at amultiple of the sample

spin rate vy, usually n=+1,+2. However, this presents an experimental challenge. The
Hartmann-Hahn matching condition becomes very narrow and is susceptible to both rf
inhomogeneities and instability in the spinning speed. Techniques such as variable-
amplitude cross polarization®* were developed to address concemns.

Limitations of this class ¢ thermodynamic description of cross polarization were
evident early on when strong transient oscillations were observed in the **C
magnetization as a function of the contact time in a ferrocene single crysta®. In this
case, there is adominant dipolar interaction, which causes a deviation from the typical
Gaussian line shapesin solids and leads to an oscillatory polarization transfer. Indeed,
deviations from the exponential -rise-exponential decay model of polarization transfer as
given by equation 16 were reported® for the a-carbon of polycrystalline glycine. This
deviation for the methylene resonance in polycrystalline glycine in avariable contact
time experiment is shown below. This contrasts with the good fit of equation 16 to the
carbonyl resonance for glycine shown in the previous section. In these cases where
equation 16 fails to adequately fit the observed data, variations of the I-1*-S model*’ are
used to describe adominant dipolar coupling to the S spin which leads to oscillatory
behavior in the polarization transfer that is gradually damped as spin diffusion occurs
among the abundant | spins.

13C CP/MAS Methylene Resonance
Glycine (alpha carbon)
Variable Contact Time

Arbitrary Units
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Citing concerns of "weakness" in the spin-temperature approach, atheory based on the
quantum Liouville equation® has been proposed for CP/MAS. The specific concerns
with the thermodynamic approach involved "no basis for an equilibrium to be obtained
and thus no basis for assuming athermal distribution” (as the spin system shows little or
no relaxation during the experiment) and the fact that the Hamiltonian is still time-
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dependent if MAS s performed (which questions the thermal equilibrium in the doubly-
rotating frame).

Numerous examples of variable contact time experiments and analyses to study
magnetization transfer of particular functionaitiesin various materials are in arecent
review article”. In particular, many materials science applications are given. Such
Kinetic studies (which depend strongly upon dipolar interactions and, hence, on the |-S
distance for nuclei like *H and **C) provide information on spatial orientation, mobility,
separation of domains, and differentiation between protonated and non-protonated
carbons. Other recent studies included amino acids™ and coal®.

The cross-polarization experiment using the heteronuclear dipolar interaction is
widely used in solid-state NMR, especially for spin-¥2 nuclei with polarization transfer
from abundant *H to enhance the sensitivity of such rare spin species as **C, *Si, and
BN. Inthe solid state, it is also possible to cross polarize to or from half-integer
quadrupolar nuclei®®. However, such experiments are typically difficult due to the
challenges presented by the spin dynamics involved in spin locking and polarization
transfer via the quadrupolar interaction. This difficulty is exacerbated with the addition
of MAS. These difficulties arise in polycrystalline materials from the polarization
transfer being strongly anisotropic with respect to crystallite orientation in the magnetic
field. The polarization transfer also depends upon the relative size of the quadrupolar
coupling constants, the amplitudes of the rf inductions, the spinning speed, and the
resonance offsets. The poor polarization transfer efficiency, as compared with that
achievable for spin-%2 nuclel, means that cross polarization for quadrupolar nuclei is
primarily ameans of spectral editing as opposed to a means of signal enhancement.
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Appendix |

The magnetic field at any point in space can be represented in terms of the magnetic
vector potential A, which is determined by the current density J (F) . The magnetic

induction is the curl of the vector potential, B =[x A. Thisresults from one of

Maxwell's four equations requiring the divergence of B to be zero and from vector
analysis where the divergence of the curl of any vector is zero.
Another of Maxwell's equations rel ates the magnetic field to the current density

by Ox B = OxOx A= g, J . Using the vector identity Ox (Ox A) = O(OCA) - 02 A and
physically arguing that the divergence of A, that isﬁD&, can be set to zero without
affecting the curl yields Poisson's Equation, — 0% A= -, J . With the substitution

dr

ra—r

Jdv=1dr , the solution to Poisson's Equation isA(r) = ’Z—(;ITiﬁ

-1
and using the identity r,xdrxr, =—r,(r,tdr,)+dr(r,x2) alow

r,=n

Expanding

. . o T VL .
the vector potential to be writtenas A(r) = &[I—if r,xd rl} x—2 , orintermsof the
r

4| 2 5

magnetic moment m , A(F) = Ho Ty . Using the vector identity

a4 r;}

O (IEx G) = FOG-GOF+ (éDﬁ) F- (IEDﬁ)é , the magnetic field can be calculated
I ]

3(&][?2)(2 _ﬁ

ry ry

from the curl of the vector potential yielding é(?) = 21—0 . The
T

|

important point is that the magnetic field of a distant ci reuit does not depend upon its
detailed geometry but can be expressed in terms of its magnetic moment.

The Zeeman energy of a second magnetic moment m interacting with this magnetic

fieldisE = - rﬁ'[é(?) , asgiven earlier in equation 2,
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To understand the origin of the nomenclature of this "magnetic dipolar interaction," it
is enlightening to explicitly compare this result with that derived for an electric dipole. In
the case of an electric dipole, the necessary mathematics are more straightforward.

The form for the electrical dipolar interaction is derived by determining the field due
to the electric dipole at some point P, as shown below. Thefield isthe gradient of the

scalar potential E=0V,whereV = q(l —i) fora<<r,.
r

1 2

-q Origin +q

Electrical Dipole
at Point P

Expressing the potential in termsof r yields V =g 1 - 1

r —900519 r +§cosﬂ
2 2
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However, V =q

= ,— =—5, Wherea<<r and the dipole

mcosd - -
altossd H mCt
a2
r’—=-cos’ 9
4
moment is defined by m= q a. Since - ﬁ(%} = Ls , the potential can be written as
r
V= —mD]](l]. Using the vector identity
r

0| FIG |=| FID |G+| G |5+IExEXé+é><ﬁ><|5andrealizingthat rﬁ:qéza
constant, then the field due to adipoleis E=|mD ﬁ(lj

r

The energy of asecond dipole m interacting with thisfield isgivenby E = - mCE .

, 0 q ) 0 g 5”‘ 3qiqj )
E = m —— ,whereg=x,y, z. Using —— =———— Qives
2.2mm 5o a=xy 95015 10 15 O
 3mo | md
m'in
E e - (5

Since the magnetic interaction given in equation (2) has the same functional form as that
of the electrical dipole interaction, equation (2) is usualy referred to as the magnetic
dipole interaction.

Appendix I

Consider a spin system in thermal equilibrium with areservoir of temperature T. The
various states n of the total system are occupied with fractional probabilities p, given by
the Boltzmann factor

1 'E%T

=—e
Pn 7
where Z is the partition function, k is Boltzmann's constant, and E, is the energy of the
state. The partition function Z can be calculated™® without solving for the energies and
eigenvalues of the Hamiltonian by expanding the partition function in powersof 1/T. In
other words,
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Z= Ze'E%T = Z<n‘e'%T

n

n> =Tr {e_%T |

Expanding the exponential in apower series,

1 2 _ N 1 2
Z :Tr{(l— %T+§(I%(T) +....]}-(2| +1) +WTr{H }+

in which the Tr{ H} = 0 for both the Zeeman and dipolar interactions. The average
energy E and the magnetization M, are given by

E=> p.E,
and

M, = Zﬁ(n“ Z|n)pn .

—~ 21T

In the high temperature limit* with the magnetic energy levels being much smaller

than KT, then terms of 1/(kT)? and higher can be ignored to yield

_,a(,_E,
P, =2 (1 kT)

which results in the average energy and magnetization of

E :_CB%

and
v =CB
=5
2IW2 N -
where C :i(%ﬂﬂ)],the Curie constant, and H = —-yB[0 with Bbeing the
7T

magnetic induction. This high temperature approximation istypically valid for spin-%2
nuclei above 4 K.
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