
TopSpin
NMR Pulse Programming for AVANCE NEO and
Fourier 80
User Manual
Version 015

Innovation with Integrity

●

NMR

Copyright © by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means without the prior consent of the
publisher. Product names used are trademarks or registered trademarks of their re-
spective holders.

© November 04, 2021 Bruker Corporation

Document Number: 10000059107

P/N: H166633

Contents

H166633_15_015 iii / 128

Contents
1 About This Manual ... 9

1.1 Symbols and Conventions .. 9

2 Basic Pulse Program Writing .. 11
2.1 Introduction ... 11
2.1.1 Spectrometer Naming Conventions .. 11
2.1.2 Font and Format Conventions .. 11
2.2 Pulse Program Library .. 12
2.3 Pulse Program Display ... 12
2.4 Basic Syntax Rules ... 12
2.4.1 Line Orientation... 13
2.4.2 Comments... 13
2.4.3 Calculation of Parameters... 13
2.4.4 File Import ... 13
2.4.5 Labels ... 13
2.4.6 Pulse Power.. 14
2.4.7 Decoupling .. 14
2.4.8 Delay... 14
2.4.9 Pulse ... 14
2.4.10 Data Acquisition .. 15
2.4.11 The mc Macro ... 15
2.4.12 Decoupler off Command ... 15
2.4.13 Pulse Program Exit ... 16
2.4.14 Phase Program Definitions ... 16

3 Pulse Generation .. 17
3.1 Pulse Duration .. 17
3.1.1 p0-p63... 17
3.1.2 Fixed Length Pulses ... 17
3.1.3 Random Pulses... 18
3.1.4 User Defined Pulses ... 18
3.1.5 Pulse Lists Defined in the Pulse Program... 18
3.1.6 Manipulating Pulse Durations: The Multiplication Operator *.. 19
3.1.7 Manipulating Pulse Durations: Changing p0-p63 by a Constant Value 20
3.1.8 Manipulating Pulse Durations: Redefining p0-p63 via an Expression 20
3.1.9 Manipulating the Durations of User Defined Pulses ... 20
3.2 Pulse Frequency ... 21
3.2.1 Frequency Channels... 21
3.2.2 Setting Frequency from Constants or Numbers.. 21
3.2.3 Frequency Lists Applied to the Reference Frequency .. 22
3.2.4 Frequency Lists Defined in the Pulse Program... 22
3.2.5 Frequency Lists Defined in a File.. 23
3.2.6 Using Old Style Frequency Lists... 24
3.3 Pulse Phase.. 25

Contents

iv / 128 H166633_15_015

3.3.1 Phase Program Definition ... 25
3.3.2 Phase Program Syntax ... 25
3.3.3 Phase Program Position ... 26
3.3.4 Phase Cycling ... 26
3.3.5 Phase Pointer Increment .. 27
3.3.6 Adding a Constant to a Phase Program ... 27
3.3.7 Phase Program Arithmetic .. 28
3.3.8 Phase Program Modifications at Runtime... 28
3.3.9 Calculation and Usage of Phase Programs at Runtime.. 29
3.3.10 Runtime Changes of the Phase Program Increments .. 29
3.3.11 Phase Setting without Executing a Pulse ... 30
3.3.12 Definition of Phase Programs Using List Syntax .. 30
3.4 Pulse Power and Shape ... 31
3.4.1 Rectangular Pulses... 31
3.4.2 Power Lists ... 31
3.4.3 Shaped Pulses.. 33
3.4.4 Shape Lists ... 35
3.4.5 Amplitude Lists.. 35

4 Delays .. 37
4.1 Delay Generation .. 37
4.1.1 d0-d63... 37
4.1.2 Random Delays .. 37
4.1.3 Fixed Length Delays ... 38
4.1.4 User Defined Delays ... 38
4.1.5 User Defined Delay Lists .. 38
4.1.6 Special Purpose Delays.. 40
4.2 Manipulating Delays.. 40
4.2.1 The Operator * .. 40
4.2.2 Changing d0-d63 by a Constant Value ... 40
4.2.3 Redefining d0-d63... 41
4.2.4 Manipulating the Durations of User Defined Delays ... 41
4.2.5 max, min and random ... 41

5 Simultaneous Pulses and Delays ... 43
5.1 Rules... 43
5.2 Examples .. 43
5.2.1 Rule 1.. 43
5.2.2 Rule 2.. 43
5.2.3 Rule 3.. 44
5.2.4 Rule 4.. 45
5.3 Pulse Train Alignment... 45
5.3.1 Global Alignment... 45
5.3.2 Individual Alignment.. 45

6 Decoupling .. 49
6.1 Decoupling Statements... 49
6.2 Decoupling Frequency .. 49
6.3 Decoupling Phase... 50

Contents

H166633_15_015 v / 128

6.4 Composite Pulse Decoupling (CPD)... 50
6.4.1 General ... 50
6.4.2 Syntax of CPD Sequences ... 51
6.4.3 Phase Programs in CPD Programs .. 53
6.4.4 Frequency Setting in CPD Programs.. 53
6.4.5 Frequency Setting from Lists .. 53
6.4.6 Frequency Setting Using the Parameters CNST0-63 ... 54
6.4.7 Offset Frequencies.. 54
6.4.8 Direct Specification of Frequencies .. 54
6.4.9 Loop Statements in CPD Programs.. 54
6.4.10 Manipulation of Loop Counters during Execution (BILEV Decoupling)........................... 54
6.4.11 Relations in CPD Programs .. 55

7 Gradients... 57
7.1 Rectangular Gradients .. 57
7.1.1 Gradient Ramping... 57
7.2 Shaped Gradients ... 58
7.3 Gradient Lists.. 58
7.4 Manipulation of Rectangular or Shaped Gradients ... 59
7.4.1 Manipulation with Functions.. 59
7.4.2 Manipulation by Recalculation .. 60
7.5 General Gradient Statements ... 60
7.6 Rotation and Scaling... 61

8 Relations ... 65
8.1 The Relation Interpreter .. 65
8.1.1 Syntax Elements ... 65
8.1.2 Constants.. 65
8.1.3 Functions .. 65
8.1.4 Variables ... 66
8.2 Compile Time and Run Time .. 66
8.2.1 Compile Time.. 66
8.2.2 Run Time .. 67
8.2.3 Parameters ... 67

9 Loops and Conditions.. 69
9.1 The Unconditional goto Statement.. 69
9.2 Loop Statements... 69
9.3 Loop Counter Lists.. 70
9.4 Conditional Pulse Program Execution .. 71
9.4.1 Conditions Evaluated at Precompile Time .. 71
9.4.2 Setting of Precompiler Conditions... 72
9.4.3 Macro Definitions .. 73
9.4.4 Conditions Evaluated at Compile Time... 73
9.4.5 Conditions Evaluated at Run Time ... 74
9.5 Suspend/Resume Pulse Program Execution and Precalculation 76
9.5.1 Changing Parameters Interactively during Pulse Program Execution 77
9.6 Pulse Program Execution on Independent Channels ... 77
9.7 Rotor Triggering in Pulse Programs.. 78

Contents

vi / 128 H166633_15_015

9.7.1 Wait for Defined Number of Rotations .. 79
9.7.2 Wait for Defined Number of Rotations and a Sync Delay ... 79
9.8 Synchronization of a Pulse to a Constant Rotation Angle .. 80

10 Data Acquisition and Storage ... 83
10.1 Start Data Acquisition ... 83
10.1.1 The Statements go=label, gonp=label, gosc, goscnp ... 83
10.1.2 The Statements rcyc=label, rcycnp=label ... 84
10.1.3 The Statements eosc, eoscnp .. 85
10.1.4 The Statements ze and zd .. 85
10.1.5 The Statement adc.. 85
10.1.6 The Receiver Phase ... 87
10.1.7 External Dwell Pulses ... 88
10.2 Acquisition Memory Buffers .. 90
10.3 Writing Data to Disk .. 91

11 The mc Macro Statement ... 95
11.1 The mc Macro Statement in 2D .. 95
11.2 The mc Macro Statement in n-Dimensional Experiments... 98
11.3 Additional mc Clauses .. 99
11.4 General Syntax of mc ...100
11.5 Advanced nD Sampling Techniques...102
11.5.1 The Parameter FnTYPE ...102
11.5.2 Parameter Calculation from Complex Point Indices ...102
11.5.3 Old and New Syntax ...103

12 Subroutines... 105
12.1 Definition ...105
12.2 Subroutine Execution..105
12.2.1 Subroutines with Variable Names...106
12.2.2 Subroutines with Variable Names and Classes ..106

13 Miscellaneous ... 107
13.1 Multiple Receivers...107
13.2 Real Time Outputs ..107
13.2.1 Type 1 Outputs (“NMR control words“) ...107
13.2.2 NCO Control ...108
13.2.3 Real Time Pulses RTP..108
13.3 Miscellaneous Statements ..109
13.3.1 Receiver Gain Lists...109
13.3.2 Assignment of Transmitter Blanking Pulses: blktr...110
13.3.3 Printing Messages ..111
13.3.4 Specify a Minimum Required Version...111
13.3.5 Force FID-Scaling ...111
13.3.6 Generating a Manifest File..112

14 Contact .. 115

List of Figures... 117

List of Tables .. 119

Contents

H166633_15_015 vii / 128

Glossary .. 121

Index .. 123

Contents

viii / 128 H166633_15_015

About This Manual

H166633_15_015 9 / 128

1 About This Manual
This manual enables safe and efficient handling of the device.
This manual is an integral part of the device, and must be kept in close proximity to the
device where it is permanently accessible to personnel. In addition, instructions concerning
labor protection laws, operator regulations tools and supplies must be available and adhered
to.
Before starting any work, personnel must read the manual thoroughly and understand
its contents. Compliance with all specified safety and operating instructions, as well as local
work safety regulations, are vital to ensure safe operation.
The figures shown in this manual are designed to be general and informative and may not
represent the specific Bruker model, component or software/firmware version you are
working with. Options and accessories may or may not be illustrated in each figure.

1.1 Symbols and Conventions
Safety instructions in this manual and labels of devices are marked with symbols.
The safety instructions are introduced using indicative words which express the extent of the
hazard.
In order to avoid accidents, personal injury or damage to property, always observe safety
instructions and proceed with care.

 DANGER
DANGER: Indicates a hazardous situation that, if not avoided, will result in
death or serious injury. This signal word is limited to the most extreme
situations.
This is the consequence of not following the warning.
1. This is the safety condition.
u This is the safety instruction.

 WARNING
WARNING: Indicates a hazardous situation that, if not avoided, could result in
death or serious injury.
This is the consequence of not following the warning.
1. This is the safety condition.
u This is the safety instruction.

About This Manual

10 / 128 H166633_15_015

 CAUTION
CAUTION: Indicates a hazardous situation that, if not avoided, could result in
minor or moderate injury.
This is the consequence of not following the warning.
1. This is the safety condition.
u This is the safety instruction.

NOTICE
NOTICE: Indicates information considered important, but not hazard-related
(e.g. messages relating to property damage).
This is the consequence of not following the notice.
1. This is a safety condition.
u This is a safety instruction.

SAFETY INSTRUCTIONS
SAFETY INSTRUCTIONS are used for control flow and shutdowns in the event
of an error or emergency.
This is the consequence of not following the safety instructions.
1. This is a safety condition.
u This is a safety instruction.

This symbol highlights useful tips and recommendations as well as information designed to
ensure efficient and smooth operation.

Basic Pulse Program Writing

H166633_15_015 11 / 128

2 Basic Pulse Program Writing

2.1 Introduction
A pulse program is an ASCII text consisting of a number of lines. Each line may contain one
or more pulse program statements which specify actions to be performed by the acquisition
hardware and software. You can set up a pulse program with the TopSpin commands edpul
or edcpul (see the Acquisition Reference Manual). The TopSpin acquisition commands gs,
go, and zg execute the pulse program defined by the acquisition parameter PULPROG which
can be set with eda or pulprog. Pulse program execution is a two-step process: After
entering gs, go, or zg, the pulse program compiler is invoked which translates the pulse
program text into an internal binary form that can be executed. Possible syntax errors are
reported. If errors are found, the acquisition will not be started. If, however, the compilation is
successful, the compiled pulse program is loaded into the acquisition hardware and the
measurement begins.

2.1.1 Spectrometer Naming Conventions

This manual is written for AV spectrometers. Nevertheless, a large part of it is also valid for
older spectrometers like AMX, ARX, ASX, and Avance. You can easily find out which type of
spectrometer you have at the cabinet door; the name is AV, AV II or AV III (sometimes also
AV II+) or AV III HD.

2.1.2 Font and Format Conventions

Type of Information Font Examples

Shell Command,
Commands,
“All that you can enter”

Arial bold Type or enter fromjdx
zg

Button, Tab, Pane and Menu Names

“All that you can click”

Arial bold, initial letters
capitalized

Use the Export To File
button.

Click OK.
Click Processing…

Windows, Dialog Windows, Pop-up
Windows Names

Arial, initial letters
capitalized

The Stacked Plot Edit
dialog will be
displayed.

Path, File, Dataset and Experiment
Names
Data Path Variables
Table Column Names
Field Names (within Dialog
Windows)

Arial Italics $tshome/exp/stan/nmr/
lists

expno, procno,

Parameters Arial in Capital Letters VCLIST

Program Code
Pulse and AU Program Names
Macros
Functions
Arguments
Variables

Courier go=2
au_zgte
edmac

CalcExpTime()
XAU(prog, arg)
disk2, user2

Basic Pulse Program Writing

12 / 128 H166633_15_015

Type of Information Font Examples

AU Macro Courier in Capital
Letters

REX

PNO

Table 2.1: Font and Format Conventions

2.2 Pulse Program Library
Routine users normally use Bruker pulse programs delivered with TopSpin. The edpul
command displays a list of these pulse programs and allows you to view their contents.
Viewing Bruker pulse programs requires that the expinstall command was executed once
after the installation of TopSpin. This command copies the pulse programs suitable for your
spectrometer into the default directories.
If you want to write your own pulse programs, it can be helpful to start with a Bruker pulse
program, put it into the user directory, and modify it to your needs.

2.3 Pulse Program Display
A graphical representation of a pulse program for AV spectrometers can be obtained with the
command spdisp, which is described in the Acquisition Reference manual.
For AV III, the command hpdisp, which is also described in the Acquisition Reference
manual, displays the pulse program showing the signals as produced by the spectrometer
hardware with exact timing of pulses, phases and amplitudes.

2.4 Basic Syntax Rules

;zgcw30
;avance-version
;1D sequence with CW decoupling
;using 30 degree flip angle

"d11=30m"

"acqt0=-p1*0.66/PI"

#include <Avance.incl>

1 ze

 d11 pl26:f2

 d11 cw:f2

2 d1

 p1*0.33 ph1

 go=2 ph31

 30m mc #0 to 2 F0(zd)

 d11 do:f2

 exit

Basic Pulse Program Writing

H166633_15_015 13 / 128

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

;pl1 : f1 channel - power level for pulse (default)
;pl26: f2 channel - power level for cw/hd decoupling
;p1 : f1 channel - 90 degree high power pulse
;d1 : relaxation delay; 1-5 * T1
;d11: delay for disk I/O [30 msec]

Table 2.2: Pulse program example

The table above shows zgcw30 as an example of a simple Bruker pulse program. Here the
following pulse programming rules are used:

2.4.1 Line Orientation

Pulse programs are line oriented. Each line specifies an action to be performed by the
acquisition hardware or software.

2.4.2 Comments

A semicolon (;) indicates the beginning of a comment. You can put it anywhere in a line. The
rest of the line will then be treated as a comment.

2.4.3 Calculation of Parameters

Parameters can be calculated within the pulse program before and during the execution.
Such relations must be enclosed by double quotes. Example: "d11=30m", see the table Table
7.1 [} 62].

2.4.4 File Import

#include <filename> or #include “filename“
This statement allows you to use pulse program text that is stored in a different file. It allows
you to keep your pulse program reasonably sized, and to use the same code in various pulse
programs. If the filename is given in angle brackets (< >), the file is searched for in the
directory $xwinnmrhome/exp/stan/nmr/lists/pp/. Alternatively, double quotes (“ “) can be used
to specify the entire path name of the file to be included.

2.4.5 Labels

1 ze
Any pulse program line can start with a label (“1“ in the example above). Labels are only
required for lines which must be reached by loop or branch statements such as go=label,
go to label times n or goto label. You can, however, also use labels for numbering the
lines. A label can be a number or an alphanumeric string followed by a comma. An example
of the latter is:
firstlabel, ze

The statement ze has the following function:
• Reset the scan counter (which is displayed during acquisition) to 0

Basic Pulse Program Writing

14 / 128 H166633_15_015

• Enable the execution of dummy scans. This will cause the pulse program statement
go=label to perform DS dummy scans before accumulating NS data acquisition scans.
If you replace ze with zd, go=label will omit the dummy scans

The statement zd automatically resets all phase program pointers to the first element,
whereas the statement ze sets all phase program pointers such that they are at the first
element after DS dummy scans.

2.4.6 Pulse Power

d11 pl14:f2

Execute a delay whose duration is given by the acquisition parameter D[11]. Behind any
delay statement, you can specify further statements to be executed during that delay (note
that the delay must be long enough for that statement). In this example, the power level of
channel f2 is switched to the value given by the acquisition parameter PLW[14].

2.4.7 Decoupling

d11 cw:f2
Execute a delay whose duration is given by the acquisition parameter D[11] and, at the same
time, turn on continuous wave (cw) decoupling on frequency channel f2. Decoupling will
remain active until it is explicitly switched off with the statement do:f2.
Delay and cw decoupling will begin immediately with the delay on which it is specified. This
illustrates a general feature of pulse programs: the actions specified in two consecutive lines
are executed sequentially. Actions specified on the same line are executed simultaneously.

2.4.8 Delay

2 d1

Execute a delay whose duration is given by the acquisition parameter D[1]. This line starts
with the label “2“, the position where the statement go=2 will loop back to.

2.4.9 Pulse

p1*0.33 ph1

Execute a pulse on frequency channel f1. The pulse length of this pulse is given by the
acquisition parameter P[1] multiplied by 0.33. P[1] is normally used for the pulse width of a
90° flip angle. The statement p1*0.33 would then execute a 30° pulse. In general, you can
specify the operator * behind (not before!) a pulse or delay statement, followed by a floating
point number. Note that the channel f1 is not specified; it is the default channel for p1, i.e.:
p1*0.33

is identical to:
p1*0.33:f1

The pulse is executed with a power (amplitude) defined by the acquisition parameter PLW[1].
PLW[1] is the default power level for channel f1, but you can also use a different parameter.
For example, the statement pl7:f1 sets the channel f1 power to the value of PLW[7]. It
must be put on a separate line, with a delay, before the line with the pulse statement.
The phase of this pulse in our example is selected according to ph1, the name of a phase
program or phase list. It must be specified behind the pulse and defined after the pulse
program body. In this example we use the phase program
ph1=0 2 2 0 1 3 3 1

Basic Pulse Program Writing

H166633_15_015 15 / 128

The phase of the pulse varies according to the current data acquisition scan. For the first
scan, p1 will get the phase 0*90°, for the second scan 2*90, for the third scan 2*90, for the
fourth scan 0*90, etc. After 8 scans, the list is exhausted. The phase program is cycled, so
with scan 9 the phase will be set to the first element of the list: 0*90°. Phase cycling is a
method of artefact suppression in the spectrum to be acquired. The receiver phase must be
cycled accordingly to ensure that coherent signals of subsequent scans are accumulated, not
cancelled. This is achieved by the receiver phase program ph31 in our example.

2.4.10 Data Acquisition

go=2 ph31

Execute one data acquisition scan, then loop to the pulse program line with label “2“. Repeat
this until NS scans have been accumulated. Note that NS is an acquisition parameter. The
data acquisition scans are preceded by DS dummy scans (because the statement ze is used
at the beginning of the pulse sequence rather than zd). A dummy scan does not acquire any
data, but requires the same time (given by the acquisition parameter AQ) as a real scan.
Dummy scans are used to put the spin system of the sample into a steady state before
acquisition starts.
The receiver phase is changed after each scan as described above for the pulse phase.
Phase cycling is done according to the phase program ph31. Phase cycling is also used
during the execution of dummy scans. Both DS and NS must therefore be a multiple of the
number of phases in the list.
The go=label statement executes a delay, the so-called pre-scan-delay to avoid pulse feed
through before it starts digitizing the NMR signa. lDuring this time the receiver gate is opened
and the frequency is switched from transmit to receive. DE is an acquisition parameter that
can be set from eda or by entering de on the command line. It consists of the sub-delays
DE1, DEPA, DERX and DEADC that can be set with the command edscon (see the
Acquisition Reference manual). Normally, you can accept the default values for DE value and
its sub-delays. The total time the go=label statement requires to execute a scan is DE+
AQ+3 millisec. The duration of 3 millisec is required for preparation of the next scan. It is valid
for all Avance type spectrometers.

2.4.11 The mc Macro

30m mc #0 to 2 F0(zd)

writes the accumulated data as file fid into the EXPNO directory of the current data set. Note
that with the zgcw30 pulse program, data are only stored on disk after all NS scans have
been accumulated. You can, however, store the data to disk after any scan during the
acquisition by entering the command tr on the command line. You can process and plot
these data while the acquisition continues. If you want to protect your data against power
failures during long term experiments, we recommend that you write the data on disk in
regular intervals, for example every 100 scans. To accomplish this, you can set NS=100 and
TD0=300 (if the pulse program is written using the mc-syntax). The pulse program then
accumulates a total of 30.000 scans, but stores the result every 100 scans.
Please note that the mc macro must include a zd statement. The reason for this is that wr #0
adds the last acquired data to the data already present in the file.
The real time FID display will only show the data currently present in the acquisition
processor’s memory.

2.4.12 Decoupler off Command

d11 do:f2

The decoupling power is switched off.

Basic Pulse Program Writing

16 / 128 H166633_15_015

2.4.13 Pulse Program Exit

exit

Specifies the end of the pulse program.

2.4.14 Phase Program Definitions

After the exit command the phase program definitions follow. The commentary text at the
end of the pulse program contains comments for parameters which can be displayed in the
editor ased.

Pulse Generation

H166633_15_015 17 / 128

3 Pulse Generation
The next table shows the available types of statements for the generation of high frequency
pulses

p0, p1, ... , p63 Generate a pulse whose length is given by the acquisition
parameter P[0], ..., P[63].

p0 :r, ...,p63:r Generate a pulse whose length is given by the acquisition
parameter P[0], ..., P[63] and which is randomly varied. The
maximum variation (in percent) is defined by the acquisition
parameter V9.

3.5 up, 10mp, 0.1sp Generate a pulse of fixed length: up = a μsec pulse (mp =
millisec, sp = sec).

P135, p30d1H Generate a pulse, whose name is defined by a define
pulse statement, and whose duration is defined by an
expression.

Table 3.1: Pulse generation statements

A high frequency pulse is described by its:
• duration (= pulse width)
• frequency
• phase
• power (=amplitude) and shape

The following paragraphs will describe these items.

3.1 Pulse Duration
The pulse duration is selected according to the name of the pulse statement.

3.1.1 p0-p63

The statement:
p0

executes a pulse of width P[0]. P[0] is an acquisition parameter that can be set from eda, or
by typing p0 on the command line. Likewise, the statement:
p1

executes a pulse of with P[1].

3.1.2 Fixed Length Pulses

The statement:
10mp

executes a pulse of width 10 ms (called a fixed pulse because its duration cannot be
manipulated, see below). The duration must be followed by up, mp or sp. These units
indicate microseconds, milliseconds, and seconds, respectively. If you omit the terminating
“p“, a delay would be executed instead of a pulse.

Pulse Generation

18 / 128 H166633_15_015

3.1.3 Random Pulses

The statement:
p0:r

executes a pulse of length P[0] which is varied randomly. The parameter V9 specifies, in
percent, the maximum amount which is added to or subtracted from P[0]. As such, the
effective pulse varies between 0 and 2*P0. It can be set from eda, or by typing v9 on the
command line.
Please note that the gs command ignores the :r option.

3.1.4 User Defined Pulses

The statement:
p30d1H

executes a pulse whose name is defined by the user, and whose duration is determined by
an arithmetic expression. For example, the line:
define pulse p30d1H

defines p30d1H to be a pulse statement, and the line:
"p30d1H=p1*0.33"

defines the expression for its duration. Note that the definition must be within double-quotes
(“) .
Both the define statement and the defining expression must be placed before the
beginning of the actual pulse sequence. It is evaluated at compile time of the pulse program,
not at run time. User defined pulses can consist of alphanumeric characters, where the first
character must be a alphabetic. The maximum length of the name is 11 characters. Make
sure you do not use any of the reserved words like adc, go, pulse etc.

3.1.5 Pulse Lists Defined in the Pulse Program

Instead of setting up a pulse list with edlist, a list of pulses can also be specified within the
pulse program using a define statement, e.g.:
define list<pulse> P1list = { 10 20 30 }

This statement defines the pulse list P1list with values 10 μsec, 20 μsec and 30 μsec. User
defined pulse lists must be initialized within the definition. There are two alternatives to
assigning values directly in {}-brackets. You can specify the filename of a pulse list or the
variable that contains such a filename, both in angle brackets. Examples,
define list<pulse> P2list = <mypulselist>

define list<pulse> P3list = <$VPLIST>

In both cases, the file that contains the pulse list can be created with the command edlist vp.
According to the define statements above:
P1list

executes a pulse of 10 μsec the first time it is invoked. In order to access different list entries,
you can append the .inc, .dec or .res postfix to the pulse statement to increment,
decrement or reset the index, respectively. Additionally, two operators are available which
can be used to retrieve both the length (.len) and the maximum value (.max) of a given list.
Any index operations are performed cyclically i.e. when the pointer is at last entry of a list, the
next increment will move it to the first entry. Furthermore, list entries can be specified directly
in squared brackets counting from 0, i.e. the statement:
P1list[1]

Pulse Generation

H166633_15_015 19 / 128

executes a pulse of 20 μsec according to the above definition. Lists can be executed and
incremented with one statement, using the caret postfix operator. As such, the statement:
P1list^

is equivalent to:
P1list P1list.inc

Finally, you can calculate the index directly in an arithmetic expression within double quote
characters, appending .idx to the pulse statement. The following example shows the use of
a pulse list that is assigned within its definition:
define list<pulse> locallist = {10 20 30 40}

locallist locallist.inc ; pulse of 10 μsec, change index from 0 to 1
locallist locallist.res ; pulse of 20 μsec, set index to 0
locallist[2] ; pulse of 30 μsec (leave the index unchanged)
locallist locallist.dec ; pulse of 10 μsec, change index from 0 to 3
locallist ; pulse of 40 μsec
"locallist.idx = 3" ; set index to 3
"l3 = locallist.len" ; set loop counter 3 to the length of the list
 ; (which is ‘4’ in our current example)
"p3 = locallist.max" ; set p3 to the maximum value of the list
 ; (which is ‘40’ in our example)
locallist^ ; pulse of 40 μsec, move index to 0
locallist ; pulse of 10 μsec

Index operations on pulse lists only take effect in the next line. Furthermore, you cannot
access two different entries of the same list on one line. This is illustrated in the following
example

define list<pulse> locallist = {10 20 30 40}

locallist^ locallist ; uses the same list entry (10 μs) twice
locallist ; the ^ operator takes effect: 20 μs locallist[2]
locallist[3] ; executes locallist[3] (40 μs)
Note that names for user defined items may consist of up to 19 characters, but only the first 7
are interpreted: i.e. Pulselist1 and Pulselist2 are allowed names but they would address the
same symbol.

3.1.6 Manipulating Pulse Durations: The Multiplication Operator *

A pulse duration can be manipulated with the operator *. Examples of allowed statements:
p1*1.5

p30d1H*3.33

p3*oneThird

The operator must be placed behind the pulse statement. oneThird is the name of a macro
which must have been defined at the beginning of the pulse program, e.g.:

Pulse Generation

20 / 128 H166633_15_015

#define oneThird 0.33

Note that fixed pulses cannot be manipulated. So the statement 10mp*0.33 would be
incorrect.

3.1.7 Manipulating Pulse Durations: Changing p0-p63 by a Constant Value

Each pulse statement p0-p63 has been assigned an acquisition parameter INP[0]- INP[63]
These parameters take a duration value, in μsec. The pulse program statements ipu0-
ipu63 add the value of INP[0]-INP[63] to the current value of p0-p63, respectively. Likewise,
dpu0-dpu63 subtract the value of INP[0]-INP[63] from the current value of p0-p63. The
statements rpu0-rpu63 reset p0-p63 to their original values, i.e. to the values of the
parameters P[0]-P[63]. The statements presented in this paragraph must be specified behind
a delay of any length.
Some examples:
d1 ipu3
0.1u dpu0
d1 rpu0

3.1.8 Manipulating Pulse Durations: Redefining p0-p63 via an Expression

The duration of the pulses p0-p63 is normally given by the parameters P[0]-P[63]. You can,
however, replace these values by specifying an expression in the pulse program. The
following examples show how you can do this:
“p13=3s + aq - dw*10“
“p13=p13 + (p1*3.5 + d2/5.7)*td“

The result of such an expression must have a time dimension. You can therefore include
acquisition parameters such as pulses, fixed pulses, delays, fixed delays, the acquisition time
AQ and the dwell time DW within the expression. Furthermore, you can include parameters
without a dimension such as the time domain size TD. The complete list is shown in the table
Parameters in relations [} 67].
An expression must be specified between double quote characters (“ “). It can be placed
anywhere in the pulse program, as long as it occurs before the line that contains the
corresponding pulse statement (which would be p13 in our example). Note that the second
expression in the example above assigns a new value to p13 each time the expression is
encountered, e.g. if it is contained in a pulse program loop.
Expressions can appear before the start of the pulse program (initialization phase) or during
pulse program execution (runtime).
Expressions during runtime do not cause an extra delay in the pulse program. The evaluation
is done before the pulse program is loaded, and the result is stored in the available buffer
memory to be accessed at run time. If pulse programs execute too fast, a run time message
is printed.

3.1.9 Manipulating the Durations of User Defined Pulses

User defined pulses, as described in section User Defined Pulses [} 18], can be manipulated
in the same way pulses defined by p0-p63 are manipulated (see sections above).

Pulse Generation

H166633_15_015 21 / 128

3.2 Pulse Frequency

3.2.1 Frequency Channels

The RF frequency of a pulse is selected via the spectrometer channel numbers
f1, ... ,f8 (the actual numbers of the channels depend on your spectrometer type and
accessory). A pulse on a particular channel is executed with the frequency defined for that
channel. The statements:
p1: f2
p2*0.33:f2

p30d1H*3.33:f2

all execute a pulse on channel f2, with the duration P[1], P[2]*0.33, p30d1H*3.33 and a value
from VPLIST, respectively. The pulse frequency is the value of the acquisition parameter
SFO2; the default frequency for channel f2. If the channel is not specified in the pulse
statement, p1, p2, ..., p63 all use the default channel f1. The default frequencies of the
channels f1-f8 are given by the parameters SFO1-SFO8 (see the description of SFO1,
NUCLEI, and edasp in the Acquisition Reference manual for more information about defining
frequencies for a particular channel). These parameters are loaded into the synthesizer(s)
before the pulse program starts. This gives the hardware time to stabilize before the
experiment begins. f1, f2 ... always denote the logical channel which must not necessarily
correspond to the physical channel with SGU1, SGU2 ... The assignment of logical to
physical channels is done via routing parameters (see edasp).

3.2.2 Setting Frequency from Constants or Numbers

The frequency can also be set to the values of the parameters CNST0-63 or to any number,
for example:
d1 fq=cnst20 :f1 ; SFO1 [MHz] + CNST[20] [Hz]
d1 fq=3000:f1 ; SFO1 [MHz] + 3000[Hz]
set the frequency on channel f1 to the value of CNST20 and to 3000 Hz, respectively. The
default settings refer to SFOn as base frequency and the offsets are in Hz. But the offset can
be given in PPM as well, and the base channel frequency can be BFn instead of SFOn. This
is achieved by specifying options after the frequency setting command.
Example:
d1 fq=cnst20 (bf ppm):f1

The resulting frequency will be Fn = BFn[MHz](1 + 1.0e-6*CNST[20][PPM]). The following
options are possible:

Option Meaning

sfo Base frequency SFOn

bf Base frequency BFn

Hz Offset in Hz

ppm Offset in ppm

Table 3.2: Frequency modifiers

Pulse Generation

22 / 128 H166633_15_015

3.2.3 Frequency Lists Applied to the Reference Frequency

The reference frequency is the intermediate frequency which is used by the receiver to mix
the observed signal down to a lower frequency which can be digitized there. Normally this
frequency is the same as the frequency of the transmitter pulse. For all types of Avance
spectrometers frequency changes will never affect the reference frequency.
If the reference frequency must be changed during pulse program execution, use the
(receive) option, like for instance:
define list <frequency> FQ1=<$FQ1LIST>

1u FQ1(receive):f1

3.2.4 Frequency Lists Defined in the Pulse Program

Frequency lists can also be defined in the pulse program using the define statement. The
name of a list can be freely chosen, for example:
define list<frequency> username = { 200 300 400 }

The list must be initialized, specifying a list of frequency offsets between braces, separated
by white spaces. By default, the entries are taken as frequency offsets (in Hz) to the default
frequency (SFOx) of the channel, for which the list is used. However, this behaviour can be
changed by specifying a modifier before the first entry of the list.

define list <frequency> freqList = {10
20 30 40 50}

; offset in [Hz]
relative to SFO

define list <frequency> freqList = {O
300 10 20 30 40 50}

; offset in [Hz]
relative to 300 MHz in
this example

define list <frequency> freqList = {p,
10, 20, 30, 40, 50}

; offset in [ppm]
relative to SFO

define list <frequency> freqList = {P,
10, 20, 30, 40, 50}

; offset in [ppm]
relative to BF

define list <frequency> freqList = {bf
hz, 10, 20, 30, 40, 50}

; offset in [Hz]
relative to BF

define list <frequency> freqList = {bf
ppm, 10, 20, 30, 40, 50}

; offset in [ppm]
relative to BF

define list <frequency> freqList = {sfo
hz, 10, 20, 30, 40, 50}

; offset in [Hz]
relative to SFO

define list <frequency> freqList = {sfo
ppm, 10, 20, 30, 40, 50}

; offset in [ppm]
relative to SF

Instead of list entries, a list definition can also contain the name of a list file between angle
brackets, e.g.:
define list<frequency> filefq = <freqlist>

The specified file can be created with the command edlist f1. Alternatively, you can specify
$FQxLIST between angle brackets, where x is a digit between 1 and 8. For example:
define list<frequency> f1list = <$FQ1LIST>

In this case the value of the parameter FQxLIST will be used as filename. The format of
frequency lists is the following: the first line contains the modifiers according to the table
Frequency modifiers [} 21], the following lines contains the frequencies, one item per line.

Pulse Generation

H166633_15_015 23 / 128

A maximum of 32 different frequency lists can be defined within a pulse program. The name
can be of arbitrary length, but only the first 7 characters are interpreted.
A difference between regular frequency lists (interpreted by the fqn statements) and a
frequency list defined within the pulse program is that the latter is not auto incremented. The
list index can, however, be manipulated with postfix operators. The operators .inc, .dec,
.res increment, decrement and reset the index, respectively , whereas .len and .max can
be used in a relation to retrieve the length of the list and the maximum value. Furthermore,
you can use a caret operator (^) to execute the list and increment the pointer with one
statement. You can also address a list entry by specifying its index in square brackets [].
Note that index manipulation statements are executed at the end of the duration. This, for
example, means that the statement:
d1 fqlist^ :f1 fqlist:f2

sets both channels f1 and f2 to the same frequency and afterwards increments the list
pointer.
Note that the index runs from 0 and will be treated modulo the length of the list. As such, by
incrementing the index, the frequency can be cycled through a list.
You can also set the index with a relation adding the .idx postfix to the list name.
Example:
define list<frequency> fqlist = { 100 200 300}

ze

1 p1

 d1 fqlist:f1 fqlist.inc; set freq. to SFO1+100, incr. pointer
 p1:f1 ; use frequency SFO1+100Hz
 d1 fqlist^:f1 ; set frequency and increment pointer
 p1:f1 fqlist.res ; use freq. SFO1+200, set pointer to 0
 d1 fqlist:f1 ; set frequency to SFO1+100
 p1:f1 ; use frequency SFO1+100
 d1 fqlist[2]:f1 ; set frequency to SFO1 +300
 p1:f1 ; use frequency SFO1+300
 "fqlist.idx = 1" ; set pointer to entry 1
 "l3 = fqlist.len" ; set loop counter 3 to length of list
 ; (which is ‘3’ in our example)
 "cnst3 = fqlist.max" ; set constant to maximum value of list
 ; (which is ‘0.0003’ in our example)
 d1 fqlist:f1 ; set the frequency SFO1+200
 p1:f1 ; use frequency SFO1+200
 d1 fqlist.dec ; decrement pointer
 go=1

exit

3.2.5 Frequency Lists Defined in a File

A frequency list can be defined as a text file whose lines contain frequency values (see the
command edlist in the Acquisition Reference manual).
For example, the statement

Pulse Generation

24 / 128 H166633_15_015

define list<frequency> f1list = <$FQ1LIST>

uses the frequency list whose file name is defined by the acquisition parameter FQ1LIST.
You can set FQ1LIST etc. from the eda dialog box, and you can modify a selected list with
edlist.
The first use of f1list in the pulse program sets the frequency of the respective channel by
taking the current value from the list defined by FQ1LIST. When f1list is executed the first
time, the current value is the first value in the list. The next time f1list is incremented (e.g.
by the statement f1list.inc) the current value will be the next value in the list, etc. At the
end of the list, the pointer will be re-set to the first entry of the list.
The frequency list in the text file has to be formatted in a way that the meta information (see
Chapter Frequency Lists Defined in the Pulse Program [} 22]) is written in the first line of the
file followed by one frequency value in each of the following lines.
The following examples illustrate some possible beginnings of a frequency list file:

Example 1:
O 300.13

10

20

30

Example 2:
bf ppm

103

103.5

Example 3:
bf hz

8000

7000

Example 4:
sfo ppm

5

3

3.2.6 Using Old Style Frequency Lists

You can change the frequency of a channel within a pulse program with the statements fq1-
fq8.
This syntax is obsolete now and should be replaced by one of the possibilities mentioned
above.

Pulse Generation

H166633_15_015 25 / 128

3.3 Pulse Phase

3.3.1 Phase Program Definition

Pulse phases are relative phases with respect to the reference phase for signal detection. A
phase must be specified behind a pulse statement with the name of a phase program. For
example, the statements:
10mp:f1 ph3
p2*0.33:f2 ph4
p30d1H*3.33:f3 ph5

execute pulses on the channels f1, f2, f3 and f4, respectively. As such, the channel
frequencies would be SFO1, SFO2, SFO3, and SFO4. The channel phases are set according
to the current value of the phase programs ph3, ph4, ph5, and ph6, respectively. If a pulse is
specified without a phase program, it will have the last phase that was assigned to the
channel on which the pulse is executed. Note that at pulse program start, before any pulse
has been executed, the phase on all channels is zero.
The four examples above can also be written in the following form:
(10mp ph3):f1
(p2*0.33 ph4):f2
(p30d1H*3.33 ph5):f3

This form expresses more clearly that a phase is a property of a spectrometer channel.

3.3.2 Phase Program Syntax

A phase program can be specified as shown in the following examples:
ph1 = 0 0 1 1 2 2 3 3 ;(1)
ph1 = (5) 0 3 2 4 1 ;(2)
ph1 = {0}*4 {2}*4 ;(3)
ph1 = {0 2}^1 ;(4)
ph1 = {0 2}^1^2^3 ;(5)
ph1 = {1 3}^1^2*2 ;(6)
ph1 = {{0 2}*2}^1^2 ;(7)
ph1 = {{{0}*2}^2^3^1}^2 ;(8)
ph1 = (5) {1 2}*2^1 ;(9)
ph1 = ph2*2 + ph3 ;(10)
ph1 = (float, 90.0) 30 60 95.5 ;(11)
A phase program can contain an arbitrary number of phases.
Furthermore, the list of phases in a phase program can be spread over several lines, for
example:
ph1 = 0 2 2 0
 1 3 3 1

In (1), the phases are expressed in units of 90°. The actual phase values are 0, 0, 90, 90,
180, 180, 270, 270.
In (2), the phases are expressed in units of 360°/5 , corresponding to the actual phase values
0*72, 3*72, 2*72, 4*72, 1*72 = 0, 216, 144, 288, 72 degrees. The divisor, to be specified in
parentheses () and before the actual phase list, can be as large as 2^16=65536. This
corresponds to a digital phase resolution of 360°/65536, which is better than 0.006°.

Pulse Generation

26 / 128 H166633_15_015

In (3) - (9), the operators “ * “ and “ ^ “ are used, which allow you to write long phase
programs in a compact form. For phase programs with less than 16 phases, the explicit forms
(1) and (2) are usually easier to read. The operator “*n“ (with n = 2, 3, ...) must be specified
behind a list of phases that is enclosed in braces { }. It repeats the contents of the braces
(n-1) times. The operator “^m“ (with m = 1, 2, 3, ...) must be specified behind a list of phases
that is enclosed in braces { }, or behind a previous “^m“ or behind an “*“ operator. Each “^m“
operator repeats the contents of the braces exactly once, but the repeated phase list will be
incremented by m*360/d degrees (modulo d) where d is the divisor of the phase program. If
no divisor is specified, the default value of 4 is used. The following lines display the phase
programs (3) - (9) in their explicit forms:
ph1 = 0 0 0 0 2 2 2 2 ;(3’)
ph1 = 0 2 1 3 ;(4’)
ph1 = 0 2 1 3 2 0 3 1 ;(5’)
ph1 = 1 3 2 0 3 1 1 3 ;(6’)
ph1 = 0 2 0 2 1 3 1 3 2 0 2 0 ;(7’)
ph1 = 0 0 2 2 3 3 1 1 2 2 0 0 1 1 3 3 ;(8’)
ph1 = (5) 1 2 1 2 2 3 ;(9’)
In (10), the phase program is the sum of two other phase programs, one of which is multiplied
with an integer constant. This principle is illustrated by the following example. Assume the
following phase programs:
ph2 = 0 2 1 3
ph3 = 1 1 1 1 3 3 3 3

In order to calculate ph1 = ph2*2 + ph3, we first calculate ph2*2:
ph2*2 = 0 0 2 2

Then we extend ph2 to the same size as ph3:
ph2 = 0 0 2 2 0 0 2 2
ph3 = 1 1 1 1 3 3 3 3

Now we calculate the sum of the two:
ph1 = 1 1 3 3 3 3 1 1

In cases where phase programs are added and the size of one of them is not a multiple of the
size of the other, the resulting phase program will have the length of the smallest common
multiple of the two phase programs.
In (11), the phases are defined as floating point numbers in degree. In case an ’ip’ command
is used, the increment is specified as the second argument in parentheses.

3.3.3 Phase Program Position

Phase programs must be specified at the end of the pulse program after the "exit"
statement (see the pulse program example in table Pulse program example [} 12], chapter
Basic Pulse Program Writing [} 12]). Any pulse program can contain up to 32 different phase
programs (ph0- ph31).

3.3.4 Phase Cycling

At the start of a pulse program, the first phase of each phase program is valid. The next
phase becomes valid with the next scan or dummy scan. When the end of a phase program
is reached, it starts from the beginning (phase cycling).

Pulse Generation

H166633_15_015 27 / 128

3.3.5 Phase Pointer Increment

The phase pointer in all phase programs is automatically incremented by the go statement.
However, it is also possible to explicitly switch to the next phase as shown in the following
example:
p1:f2 ph8^
p2:f2 ph8

p1 is executed with the currently active phase of ph8, then p2 is executed with the next
phase in ph8. The caret (^) postfix in the first line, increments the phase pointer to the next
phase in the list. This phase will become valid with the next pulse program statement that
includes this phase program (note that this can be the same statement if it is included in a
loop).
The following example is equivalent to the one above:
p1:f2 ph8 ipp8
p2:f2 ph8

Only in this case the statement ipp8 is used to increment the pointer in the phase program
ph8. Please note that ipp8 is specified on the same line as p1 and therefore does not cause
an extra delay between p1 and p2. The increment statements ipp0-ipp31 are available for
the phase programs ph0-ph31. Increment statements can also be specified with a delay
rather than a pulse. For example,
d1 ipp7

moves the pointer to the next phase in ph7.
If explicit phase program manipulation is used in the pulse program, the phase program
concerned will no longer be incremented with the go command.
The statements rpp0-rpp31 can be used to reset the phase program pointer to the first
element. The statement zd automatically resets all phase program pointers to the first item,
whereas the statement ze sets the pointer such that after DS dummy scans the pointer will
be at the first element of each phase program. Phase programs that use the autoincrement
feature or explicit incrementation with ipp are not incremented by the go statement at the
end of a scan.
One can set the phase program pointer to a value calculated previously:
"phval0 = 5;"
rpp7 + phval0

sets the pointer in phase program 7 to the 5th item (starting with 0). Note that only phval0
is allowed as a variable in this context.
dpp0 - dpp31 can be used analogously to go back to the previous phase program item.
If all phase programs are concerned one can also use the commands ippall, dppall
and rppall to manipulate them.

3.3.6 Adding a Constant to a Phase Program

You can change all phases in a phase program by a constant amount with the :r option.
Each phase program ph0-ph31 has a constant assigned to it, PHCOR[0]- PHCOR[31].
These can be set from eda, or by entering phcor0 etc. on the command line. For example,
with ph8 = 0 1 2 3 and PHCOR[8]=2°, the phases of the pulse:
(p1 ph8:r):f2

are 2, 92, 182, 272 degrees. Without the :r option, the phase cycle of p1 would be 0, 90,
180, 270 degrees. The :r option can be used together with the caret postfix, e.g.:
(p1 ph8^:r):f2

Pulse Generation

28 / 128 H166633_15_015

3.3.7 Phase Program Arithmetic

Each of the phase programs ph0-ph31 has three associated statements:
ip0-ip31, dp0-dp31, rp0-rp31.
These statements can also be used with an integer multiplier n, for example

ip12*n.

Consider the phase programs

ph3 = 0 2 2 0

and

ph4 = (5) 0 1 2 3.

The pulse program statement

ip3

increments all phases of ph3 by 90°. The next time that ph3 is encountered, its phase cycle
will be 1 3 3 1.
Likewise, the pulse program statement

ip4

increments all phases of ph4 by 360/5 degrees. The next time that ph4 is encountered in the
pulse program, its phase cycle will be (5) 1 2 3 4.
The statements dp0-dp31 decrement all phases of the associated phase program. The
statements rp0-rp31 reset all phases of a phase program to their original values, i.e. to the
values they had before the first ip0-ip31 or dp0-dp31.
The statements

ip3*2

dp4*2

increment ph3 by 2*90=180°and decrement ph4 by 2*360/5=144°.
It is also not necessary anymore to specify an explicit delay for the ip/dp/rp statements as
their calculation does not require additional time on modern spectrometers.

3.3.8 Phase Program Modifications at Runtime

The following modifications on a phase program are possible during the execution of an
experiment:

Pulse Generation

H166633_15_015 29 / 128

(1) p1 ph=91.5
(2) (d1 p21:sp2 ph=cnst30):f2
(3) p1 ph1+ph2
(4) p1 ph1+90
(5) p1 ph=cnst30+90

In (1), a phase is set to a value given explicitly in degrees.
In (2), the phase is set from the parameter cnst30, which can be calculated in a relation at
some other place in the pulse program before.
In (3), the phases of 2 phase programs are added together.
In (4), a constant offset is added to a phase program. This is especially useful in subroutines,
where a phase program is defined in the main program and phases in the subroutine are set
relative to this phase program.
In (5), the parameter cnst30 is used with an offset.

3.3.9 Calculation and Usage of Phase Programs at Runtime

There are two ways to calculate constants from phase programs and set phases at runtime:
(1)
"cnst30=ph1+nsdone*90"
p1 ph=cnst30

(2)
"ph1=(nsdone%8)*30"
p1 ph1

In example (1), cnst30 is calculated, using a phase program and adding a variable amount
to it depending on the current scan counter. cnst30 the is used some time later in the pulse
program to set the phase of pulse p1.
In (2), the current value of phase program ph1 is overwritten with some value calculated from
the scan counter. If the scan counter was 3 and the original phase program was
ph1(360)=0 90 90 0

the modified phase program would be
ph1(360)= 0 90 60 0

The phase program ph1 will have this value as long as no phase program manipulation
command is executed between the two statements. Any such command will replace the
current phase value with the value from the original phase program.

3.3.10 Runtime Changes of the Phase Program Increments

The ip statement can also be used to add increments other than the amounts defined in the
definition of the phase program. This is done using the parameters CNST[0]-CNST[31]
(which can have a positive or negative value). For example, the statement:
d11 ip1+cnst23

adds the value of CNST[23] to each phase of the phase program ph1.
A constant can also be defined in the pulse program. As such it is calculated at runtime. For
example, the section:
"cnst23=d0*360/24;"
d11 ip1+cnst23

Pulse Generation

30 / 128 H166633_15_015

calculates a phase from the current value of d0 and then puts it into the parameter cnst23.
Then it adds this value (in degrees) to each phase of the phase program ph1. Note that
ip1+cnst23 works on the original phase program ph1 whereas ip1(*n)works on the
current phase program ph1.
As an example, the next pulse program section increments the phase at runtime depending
on the number of scans done:
"cnst5 = 20"
2 d1
p1 ph1

6u ip1+cnst5 ; set the phase program to the original values + cnst5 "cnst5= nsdone*30"
go =2 ph31
ph1 = 0 2 2 0 1 3 3 1

3.3.11 Phase Setting without Executing a Pulse

Phases can be set after pulses or delays. TopSpin allows to set the phase for a particular
spectrometer channel without executing a pulse. In that case, you must specify a phase
program behind a delay. Example:
(d1 ph1):f3
(p11:sp1):f3

Note that on AV spectrometers there is no frequency while there is no pulse. This kind of
phase setting makes sense only if there is no time to set the phase during the pulse (e.g. for
ultrafast shape pulses).

3.3.12 Definition of Phase Programs Using List Syntax

Instead of setting up ph0-ph31 at the end of the pulse program, a phase program may also
be defined by a list definition, which must then occur before the actual start of the pulse
program (beginning with ze):
define list<phase> PhList1={0.0 180.0 90.0 270.0}

This statement defines the phase program PhList1 with phase values of 0°, 180°, 90° and
270°. Note that in contrast to the previously described definitions of phase programs, all
angles are written in degree in this syntax. Instead of initializing the phase program directly
with {}-brackets, you may also specify the file name of a phase program or the variable
PHLIST which contains such a filename, both in angle brackets. Examples,
define list<phase> PhList2=<myphaseprogram>
define list<phase> PhList3=<$PHLIST>

In both cases, the file that contains the phase program can be created with the command
edlist phase.
Phase setting from user-defined phase programs is done in exactly the same way as with the
standard phase programs by specifying the phase program after a pulse statement.
After initialization, the current value of a user-defined phase program is its first entry. You can
access other entries by using the list operations .inc, .dec, or .res to increment,
decrement, or to reset the index. By using the caret postfix operator (^) you can combine
phase setting with an increment operation, as with other list types or with the standard phase
programs. However, in contrast to other list types, you can neither retrieve a particular entry
using the []-bracket notation, nor set the index directly by assigning to PhList1.idx.
Furthermore, no equivalents to the ipX, dpX, and rpX statements available with the standard
phase programs ph0-ph31 exist for user-defined phase programs. Note that user-defined

Pulse Generation

H166633_15_015 31 / 128

phase program names may consist of up to 19 characters, but only the first 15 are
interpreted. Up to 32 user-defined phase programs may be defined in a single pulse program.
It is furthermore possible to define the standard phase programs ph0 to ph31 with the above
syntax. In this case the phase program base (used for the ip0-ip31, and dp0-dp31
statements) is implicitly 65536 (equivalent to 16 bits). Using an ipX command on a standard
phase program defined with the above syntax will shift all of its phase entries by
360°/65536=0.006°. After 65536 ipX statements, the phase program entries would have
returned to their initial values. To make a 90o phase increments use ipX*16384.

3.4 Pulse Power and Shape

3.4.1 Rectangular Pulses

A rectangular pulse has a constant power while it is executed. It is set to the current power of
the spectrometer channel on which the pulse is executed. The default power for channel f1,
f2, ... , f8 is PLW[1], PLW[2], .., PLW[8]. Here, PLW is an acquisition parameter that consists
of 64 elements PLW[0] - PLW[63]. It can be set from eda or by entering plw0, plw1, etc.
on the command line. You can set the power for a particular channel with the statements
pl0-pl31. For example:
d1 pl5:f2

sets the transmitter power for channel f2 to the value given by PLW[5]. Any pulse executed
on this channel will then get the frequency SFO2 and the power PLW[5]. The pl0-pl63
statements must be written behind a delay. The power setting occurs within this delay, which
must be at least 0.2 μsec. For AVIII systems the power can be set together with the pulse
and needs no extra delay.
The power can be set not only from these parameters but also from constants, from the
parameters SPW0..63 and directly as a numbers:
d1 pl=cnst23[Watt]:f1
d1 pl=sp7:f1
d1 pl=3[dB]:f1

In case of constants or numbers the unit specifier in square brackets must follow.

3.4.2 Power Lists

In addition to the above possibilities, you can use user defined power lists on Avance
spectrometers. A user defined power list is defined and initialized in a single define
statement, e.g.:
define list<power> pwl = {dB -6.0 -3.0 0}

The define list<power> key is followed by the symbolic name, under which the list can
be accessed in the pulse program. The name is followed by an equal sign and an initialization
clause, which is a list of power values, either in Watt or in dB, enclosed in braces. Entries
must be separated by white spaces. The first entry must be the unit specifier.
You can access a power list by specifying its name, e.g.:
d1 pwl:f1

sets the power of channel f1 to -6.0 dB, when it is used for the first time. You can move the
pointer within a power list with the increment, decrement and reset postfix operators .inc,
.dec, .res. For example, you can switch to the next entry of the above list with the
statement:
pwl.inc

Alternatively, you can use the caret (^) operator to set the power and increment the list
pointer within one statement. For example, the statement:

Pulse Generation

32 / 128 H166633_15_015

d1 pwl^:f1

is equivalent to:
d1 pwl:f1 pwl.inc

You can also access the list index in a relation, appending .idx to the symbolic name, e.g:
"pwl.idx = pwl.idx + 1"

The above expression is equivalent to:
pwl.inc

Furthermore it is possible to access the length (using the operator .len) or respectively the
maximum (using .max) value of the list within a relation (see examples below).
It is also possible to access a certain list element by specifying its number in square brackets,
for example:
pwl[2]

Note that list indices start with 0. All index calculations are performed modulo the length of
the list. In the above example pwl[3] = pwl[0] = -6.0.
Note that index manipulations are executed at the end of the duration. This means, for
example, that the statement:
d1 pwl^:f1 pwl:f2

will set both the f1 and f2 channel to the same power level.
As an alternative to initializing a list, you can specify a list file in angle brackets, e.g.:
define list<power> fromfile = <pwlist>

Such a file can be created or modified with the command edlist va.
The format of this power list file has to be as follows:
<powerToken>

<value 1>

<value 2>

…

<value n>

with <powerToken> being either Watt or dB depending on how you prefer to define the
power values.
For example, the following list defines three power values with 200, 300, and 400 Watts,
respectively:
Watt

200

300

400

Instead of a filename you can also specify $VALIST, for example:
define list<power> fromva = <$VALIST>

In this case, the filename is defined by the acquisition parameter VALIST.
Note that the number of user defined lists is limited to 32 for each list type. The length of the
name is arbitrary, but only the first 7 characters are interpreted.
The following example shows the use of an initialized power list:
Example:
define list<power> pwl = {Watt 10 30 50 70}

Pulse Generation

H166633_15_015 33 / 128

ze

1 d1 pwl:f1 pwl.inc ; set power on f1 to 10W, incr. pointer
 d1 pwl:f2 pwl.dec ; set power on f2 to 30W, decr. pointer
 d1 pwl[2]:f3 ; set power on f2 to 50W
 "pwl.idx = pwl.idx + 3" ; set the pointer to 0 to 3
 "l3 = pwl.len" ; set loop counter 3 to length of list
 ; (in our example to ‘4’)
 "cnst3 = pwl.max" ; set constant to maximum value of list
 ; (in our example to ‘70’)
 d1 pwl^:f4 ; set power on f4 to 70W, incr. pointer
 (p1):f1 (p2):f2 (p3):f3 (p4):f4

 go=1

exit

3.4.3 Shaped Pulses

A shaped pulse changes its amplitude (and possibly phase) in regular time intervals while it is
executing. The pulse shape is a sequence of numbers (stored in a file, see below) describing
the amplitude and phase values which are active during each time interval. The interval
length is automatically calculated by dividing the pulse duration by the number of amplitude
values in the shape file. If this is less than the minimum duration, an error message is
displayed which tells you what is the minimum pulse duration for this shaped pulse.
The next 3 examples generate shaped pulses:
(10mp:sp2 ph7) :f1
(p1:sp1 ph8):f2

(p30d1H*3.33:sp3 ph9):f3

The pulse durations are 10 ms, P[1], and p30d1H*3.33, respectively. The pulses are
executed on the frequency channels f1, f2, and f3 (i.e. the pulse frequencies are SFO1,
SFO2, and SFO3), respectively. The pulse shape characteristics are described by the entries
2, 1, and 3 (corresponding to :sp2, :sp1, and :sp3) of the table shaped pulse parameter.
This table is displayed when you click the SHAPE button within eda. The table has 64entries
with the indices 0-63. You may use the statements :sp0 - :sp63 to refer to the entries 0-63,
respectively. As you can see from the examples, a phase program can be appended to a
shaped pulse in the same way it can be appended to a rectangular pulse. The current phase
of the phase program is added to the phase of each component of the shaped pulse.
Each entry of the shaped pulse parameter table has 4 parameters assigned to it: a power
value SPW, an offset SPOFFS, a file name SPNAM and a phase alignment SPOAL.
File Name
The name of a shape file. A shape file can be generated with the command st. or from the
Shape Tool interface (command stdisp). Shape files are stored on disk in the so called
JCAMP format. They reside in the directory:
$xwinnmrhome/exp/stan/nmr/lists/wave/
After its header, a shape file contains a list of entries, one entry for each pulse shape interval.
Each entry consists of an amplitude value (in percent) and a phase value (in degree). The
amplitude value defines the percentage of the absolute power value (see below).
Offset Frequency [Hz] SPOFFS

Pulse Generation

34 / 128 H166633_15_015

The shape offset frequency allows you to shift the frequency of the shaped pulse by a certain
amount (in Hertz). This shift is realized by applying phase changes during the shaped pulse’s
time intervals. In this way, phase coherency of the frequency is maintained.
Power Value [W] SPW or [dB] SPdB
This is the absolute power value of the pulse shape when the amplitude of the shape is at
100%. The actual power value of a particular shape interval is the absolute power value
multiplied by the relative power value of that interval, as specified in the shape file. The power
of the shape is set in the interval before the start of the shape (in this case PLW[1] for
channel F1). The power setting which was used before the shape is lost. (For AV I and II
instruments it is not possible to execute pulses immediately before and after the shape,
because there must be delays in which the power setting is done. These delays must be 3μs
before and after the shape and 4μs between two shapes; for AV III instruments no such extra
delay is required, but the minimum length of a shape segment which is normally 25ns can be
executed only if there is no power setting or phase setting associated with this shape.) After
the shape the power setting remains as in the last slice of the shape. For example, in pulse
program below the pulse p2 would be executed with zero amplitude if the shape sp0 would
be a sine.
d20 pl9:f1 ; set power on channel f1 to PLW[9]
p1:sp0:f1 ; shaped pulse with abs. power SPW[0]
d11

p2:f1 ; rectangular pulse with power SPW[0]
Rather than using power values specified in SHAPE, you can also use the power value that is
currently active on the channel that you use. You can do that with the (currentpower)
modifier of the sp statement as shown the following example:
d20 pl9:f1 ; set power on channel f1 to PLW[9]
p1:sp0(currentpower):f1 ; shaped pulse with abs. power PLW[9]
p2:f1 ; rectangular pulse with power PLW[9]
The advantage of this method is that you can use pulses immediately before and after the
shape.
You can access the SHAPE table entries from eda. However, you can also set the entries
from the command line. For example, spnam5 allows you to set the file name of entry 5,
spoffs2 sets the frequency offset of entry 2 and spw15 sets the absolute power value of entry
15.
Phase Alignment
Shapes with frequency offsets do vary the phase in order to shift the frequency. By this
variation the total phase of the shape is affected as well. The parameter SPOAL[0..63]
determines whether the phase is aligned relative to the start or the end of the pulse. SPOAL
has a range of 0 to 1. If SPOAL = 0, the relative phase shift is 0 at the beginning of the pulse
whereas it is determined by the frequency offset SPOFFS and the pulse length at the end of
the pulse (this is used for “flip back” type pulses). If SPOAL = 1 the relative phase shift is 0 at
the end of the pulse (this is generally used for excitation pulses, and for SPOAL=0.5 the
phase shift is zero in the middle of the pulse (used for refocussing pulses).

Using Shapes with Variable Pulse Length
A shaped pulse can be used in connection with a variable duration. For example, the pulse
p1 has a duration P[1] and can be varied with statements like ipu1 or "p1=p1+0.5m".
For a shape consisting of 1000 points the following restrictions apply:
the minimum execution length is 1000*25 ns = 25 μsec.
When a shape is specified too short or too long, an error message will be printed.
The length of a shaped pulse can be varied with a statement like:

Pulse Generation

H166633_15_015 35 / 128

ipu1

or with a relation like:
"p1 = p1 + 0.5m"

Note that varying the length of a shape with non-zero offset frequency during the run of a
pulse program will rescale the phase shift of the shape correctly because a recalculation is
performed during run-time with respect to the actual pulse length. For example, the following
construct is possible, yielding the desired offset frequency for each loop cycle:
define list<shape> SPL=<wavelist>

define list<pulse> Plist=<$VPLIST>

1 ze

...
(Plist:SPL ph2):f1

3.4.4 Shape Lists

Instead of a single shape, one can also use different shapes from a shape list and toggle
through the list with the list increment command.
define list<shape> shl=<wavelist>

This statement defines a new object called shl which represents a shape list (with the name
“wavelist” in this example) and can be used in the same way as the normal shapes sp0-
sp63.
With the command
shl.inc

the next item from the shape list becomes active.
Shape list files are stored in the directory <XWINNMRHOME>/exp/stan/nmr/lists/sp.
A shape list file has a format similar to the shape parameter list in the editor where each entry
consists of a line containing 4 items. The next table shows a list containing the same entry
twice, the first defining the shape power in W, the second in dB.

Power[dB or W] Offset [Hz] Offset alignment Shape file name

1.0 W 0.0 0.5 Gauss

0.0 dB 0.0 0.5 Gauss
Table 3.3: An example of a shape pulse list

3.4.5 Amplitude Lists

You can define amplitude lists in a pulse program, for example:
define list<amplitude> am1={70}

The amplitude values represent the percentage of the power of a rectangular pulse. The
above list is interpreted by a statement like:
d11 am1:f1

which reduces the power on the f1 channel to 70% of PLW[1] (assuming it was at its default
value PLW[1]). All rectangular pulses on f1 will then be executed with this reduced power. A
statement like:
d12 pl1:f1

will reset the power on channel f1 to 100% of PLW[1]. Furthermore, a shape pulse like

Pulse Generation

36 / 128 H166633_15_015

p11:sp1:f1 ph1

sets the power on f1 to the power SPW[1] and the last amplitude of the shape after it has
finished.
An example of a pulse program segment using an amplitude list is:
define list<amplitude> am1={70}

p1 ph1 ; rectangular pulse on f1 with power PLW[1]
d11 am1:f1 ;set the power on f1 to 70% of PLW[1]
p1 ph2 ; rectangular pulse on f1 with 70% of PLW[1]
...

Amplitudes can be set also with the following statements;
d11 amp=amp1:f1 ; set the amplitude on f1 to the value AMP[1]
d11 amp=cnst2:f1 ; set the amplitude on f1 to the value CNST[2]
d11 amp=70:f1 ; set the amplitude on f1 to 70%

Delays

H166633_15_015 37 / 128

4 Delays

4.1 Delay Generation
The next table shows the available types of statements for the generation of delays. The
duration of a delay corresponds to the name of the delay statement.

d0, d1, ... , d63 Generate a delay whose duration is taken
from the acquisition parameter D[0], ...,
D[63], respectively.

3.5 u, 10m, 0.1s Generate a delay of fixed length: u =
μsec , m = msec, s = sec.

compensationTime Generate a delay whose name is defined
with a define delay statement, and
whose duration is defined by an
expression.

de1, de, depa, derx, deadc Generate a delay of length DE1, DE,
DEPA, DERX, DEADC, respectively.

dw, dwov Generate a delay of length DW, DWOV.

aq Generate a delay of length AQ.

acqt0 (or acqt0_F1) Determines 0-point of FID. The actual start
of the FID measurement begins after this
time.

acqt0_F2, acqt0_F3, … acqt0_F8 Same as acqt0, but for logical receiver
channels 2-8; this may be used for
baseopt acquisitions in multi-receiver
experiments

Table 4.1: Delay generation statements

4.1.1 d0-d63

The statement:
d0

executes a delay of width D[0], where D[0] is an acquisition parameter. It is set from eda, or
by typing d0 on the command line. Likewise, the statement:
d1

executes a delay of width D[1].

4.1.2 Random Delays

The statement:
d0:r

executes a delay of width D[0] which is varied randomly. The parameter V9 specifies, in
percent, the maximum amount which is added to or subtracted from D[0]. As such, the
effective delay varies between 0 and 2*D0. It can be set from eda, or by typing v9 on the
command line.
Please note that the gs command ignores the :r option.

Delays

38 / 128 H166633_15_015

4.1.3 Fixed Length Delays

The statement:
10m

executes a delay of 10 ms (called a fixed delay because its duration cannot be manipulated,
see below). The duration must be followed by u, m, or s. These units indicate microseconds,
milliseconds, and seconds, respectively.

4.1.4 User Defined Delays

The statement:
define delay compTime

defines compTime to be a delay statement and the statement:
“compTime=d1*0.33“.

is the expression that defines its duration. Note that the double-quote characters (“…”) are
mandatory.
With the above statements, the statement:
compTime

executes a delay whose name is defined in the pulse program, and whose duration is
determined by an arithmetic expression. The define statement must be inserted
somewhere at the beginning of the pulse program, before the actual pulse sequence. The
defining expression must also occur before the actual pulse sequence. It is evaluated at
compile time of the pulse program, not at run time.
Names for user defined delays must consist of alphanumeric characters, and the first
character must be an alphabetic character. The maximum length of the name is 11
characters. Caution, do not use any of the reserved words like ‚adc‘, ‚go‘, ‚pulse‘ etc. as a
delay name.

4.1.5 User Defined Delay Lists

A list of delays can be specified with a define statement in the following way:
define list<delay> Dlist = { 0.1 0.2 0.3 }

This statement defines the delay list Dlist with the values 0.1sec, 0.2sec and 0.3sec.
Instead of delay values, you can specify a list filename in the defined statement. There are
two way of doing this: you can specify the actual filename or $VDLIST, both in <>. In the
latter case, the file defined by the acquisition parameter VDLIST is used. For example:
define list<delay> D2list = <mydelaylist>
define list<delay> D3list = <$VDLIST>

In both cases, the file can be created or modified with the command edlist vd.
In a pulse program that contains the statements above, the statement:
D1list

executes a delay of 0.1 seconds the first time it is invoked. In order to access different list
entries, the list index can be incremented by adding .inc, decremented by adding .dec or
reset by adding .res. Index operations are performed modulo the length of the list, i.e. when
the pointer reaches the last entry of a list the next increment will move it to the first entry.
The operators .len and .max can be used in relations to access the length of the list or
even its respective maximum value (see examples below).
Furthermore, a particular list entry can be specified as an argument, in square brackets, to
the list name. For example, the statement:

Delays

H166633_15_015 39 / 128

D1list[1]

executes a delay of 0.2 seconds. Note that the index runs from 0 to n-1, where n is the
number of list entries.
Lists can also be executed and incremented with one statement, using the caret postfix
operator. For example, the statement:
D1list^

is equivalent to:
D1list D1list.inc

Finally, you can set the index with an arithmetic expression within double quotes using .idx
postfix. The following example shows the usage of an initialized delay list:
define list<delay> locallist = {0.1 0.2 0.3 0.4}

locallist locallist.inc ; delay of 0.1s, set index from 0 to 1
locallist locallist.res ; delay of 0.2s, set index to 0
locallist[2] ; delay of 0.3s
locallist locallist.dec ; delay of 0.1s, set index from 0 to 3
locallist ; delay of 0.4s
"locallist.idx = 3" ; set index to 3
"l3 = locallist.len" ; set loop counter 3 to length of list
 ; (which is ‘4’ in our example)
"d3 = locallist.max" ; set delay 3 to maximum value of list
 ; (which is ‘0.4’ in our example)
locallist^ ; delay of 0.4s, set index from 3 to 0
locallist ; delay of 0.1s

Note that there are two restrictions on the multiple use of delay lists within the same line:

• Index operations take effect from the next line on
• Furthermore, you cannot access two different entries of the same list in one pulse

program line as illustrated in the following example:
locallist^ locallist ; executes the first list entry (0.1s) twice
locallist ; increment takes effect now (0.2s delay)
locallist[2] locallist[3]; executes the third entry (0.4s) twice

Note that names for user defined items may consist of up to 19 characters but only the 7 first
are interpreted: i.e Delaylist1 and Delaylist2 are allowed names but would address
the same symbol.

Delays

40 / 128 H166633_15_015

4.1.6 Special Purpose Delays

These are the delay statements de1, depa, derx, deadc, de as listed in table Delay
Generation [} 37]. They are used in pulse programs in which the acquisition is started with
the adc statement rather than with go=label. Implicitly they are used in the go macro as
well and can be set in the edscon table or explicitly within the pulse program. dw and aq are
determined by setting the sweep width and cannot be redefined within the pulse program.
The delay acqt0 is a delay which is not used by the pulse program compiler but in
connection with the baseopt option of DIGMOD. It serves to determine the point where t=0 for
the FID. This point is for a simple zg program somewhere in the middle of the excitation
pulse. One therefore defines this delay as
"acqt0= -p1*2/pi"

The linear prediction software takes this value to reconstruct the part of the FID which could
not be measured.

4.2 Manipulating Delays

4.2.1 The Operator *

A delay can be manipulated by the “*“ operator. Examples of allowed statements are:
d1*1.5
compensationTime*3.33
d3*oneThird

The * operator must be specified behind the delay statement, not before. oneThird is the
name of a macro that must be defined at the beginning of the pulse program with a statement
like #define oneThird 0.33. Note that a statement like 10m*0.33 would be incorrect,
since 10m is a fixed delay.

4.2.2 Changing d0-d63 by a Constant Value

The delays executed by d0-d63 can be incremented or decremented according to the
acquisition parameters IN[0]-IN[63]. These parameters contain a duration (in seconds). The
pulse program statements id0-id63 add IN[0]-IN[63] to the current value of d0-d63,
respectively. Likewise, dd0-dd63 subtract IN[0]-IN[63] from the current value of d0-d63. The
statements rd0-rd63 reset d0-d63 to their original value, i.e. to the values of the parameters
D[0]-D[63]. The statements presented in this paragraph must be specified behind a delay of
any length. Examples:
d1 id3
0.1u dd0
d1 rd0

In Bruker pulse programs, D[0] and D[10] are used as incremental delays for 2D and 3D
experiments, IN[0] and IN[10] are the respective increments which are used. IN[0] can be set
in the pulse program by a calculation:
"in0=inf1/2"

Here the parameter INF1= 1/SW(F1) represents the dwell time for this dimension (see the
description of IN0, INF1 in the Acquisition Reference manual). You can also set the sweep
width in F1 by calculating INF1 within the pulse program.
Please note that the parameter INF contains a delay in microseconds and is internally
rounded to 12.5ns after each calculation. This may also play a role if inf is used for
calculation in the pulse program.

Delays

H166633_15_015 41 / 128

4.2.3 Redefining d0-d63

The duration of the d0-d63 statements is normally given by the parameters D[0]- D[63].
However, you can overwrite these values in the pulse program using an expression in C
language syntax. The following examples show some of the possibilities:
"d13=3s + aq - dw*10"
"d13=d13 + (p1*3.5 + d2/5.7)*td"

The result of such an expression must have a time dimension. You can therefore include
acquisition parameters such as pulses, fixed pulses, delays, fixed delays, acquisition time
AQ, dwell time DW etc. within the expression. Furthermore, you can include parameters
without a dimension such as the time domain size TD. The complete list is shown in the table
Parameters in relations [} 67]. An expression must be double-quoted (“ “). It can be inserted
anywhere in the pulse program, as long as it occurs before the delay statement that uses the
expression (d13 in our example). Please note that the second expression in the example
above assigns a new value to d13 each time the expression is encountered, for example in a
loop.

4.2.4 Manipulating the Durations of User Defined Delays

You can define your own delay statements using a define statement like:
define delay compensationTime

at the beginning of the pulse program. This delay is executed by the statement:
compensationTime.

The delay length must be defined with a statement like:
"compensationTime=d1*0.33".

For such an expression the same rules apply as for the manipulation of d0-d63, described in
the previous section.

The defining expression of a user defined delay must occur before the start of the actual
pulse sequence. It is evaluated at compile time of the pulse program, but you can redefine it
at run time.

4.2.5 max, min and random

In order to avoid complicated expressions for the assignment of delays and pulses, the
comparison of two delays and/or pulses can be made like this:
define delay delta
"delta=max(p4,d2)"

In this expression the length of p4 and d2 are compared, and the delay delta will become
equal to the longer one.
Furthermore, there is also a minimum function where delta will become equal to the shorter
value of p4 and d2, respectively:
"delta=min(p4,d2)"

Possible units are also considered, e.g.
“delta = max(4u, 2m)”

Will set delta to 2m.
In order to randomize a delay or a pulse only at a certain point of the program, one can use
the following:

Delays

42 / 128 H166633_15_015

"p4=random(p1,20)"

which will assign p4 the value of p1*(100+20*R)/100, where R is a random number in the
range of -1 to +1. This can be used, where the pulse p4 should be changed not each time it
is used, but for instance only after ns scans. (The usage of p4:r within the pulse program
randomizes the pulse each time when it occurs).
(p1 ph1 100u):f1
(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on channel f2.

Simultaneous Pulses and Delays

H166633_15_015 43 / 128

5 Simultaneous Pulses and Delays

5.1 Rules
The following rules apply in pulse programs:
1. Pulses and delays specified on subsequent lines are executed sequentially.
2. Pulses and delays which are specified on the same line, and which are enclosed in the

same set of parentheses or without parenthesis are executed sequentially. Such a
sequence is called pulse train in the following.

3. Pulse trains on the same line are executed simultaneously. The first item within a pulse
train is started at the same time as the first item in any other pulse train. You can specify
an arbitrary number of sets of parentheses on a line.

4. Pulse trains on different lines which are enclosed by an extra set of parentheses are
executed simultaneously.

5.2 Examples

5.2.1 Rule 1

The pulse program section
(p1 ph1):f1

100u

(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on channel f2.

Figure 5.1: An example for rules 1 and 2

5.2.2 Rule 2

The pulse program section
(p1 ph1 100u):f1

(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on channel f2, see
figure Figure 5.1 [} 43].

Simultaneous Pulses and Delays

44 / 128 H166633_15_015

See also
2 Rule 1 [} 43]

5.2.3 Rule 3

The pulse program section
(p1 ph1):f1 (100u)
(p2 ph2):f2

executes a pulse on channel f1.
At the same time, the 100 μsec delay begins, since it is enclosed in a separate set of
parentheses. The pulse on channel f2 is not executed before either p1 or 100u have
passed, whichever is longer, see the next figure.

Figure 5.2: An example for rule 3

The following example is a typical section of a DEPT pulse program:
(p4 ph2):f2 (p1 ph4 d2):f1
(p0 ph3):f2 (p2 ph5):f1

The pulses p4 and p1 begin at the same time, p4 on channel f2 and p1 on channel f1. The
pulses p0 and p2 start simultaneously, but not before the sequence with the longest duration
of the previous line has finished, see figure Figure 5.3 [} 45].
The following two lines have been extracted from the colocqf Bruker pulse program.
(d6) (d0 p4 ph2):f2 (d0 p2 ph4):f1
(p3 ph3):f2 (p1 ph5):f1

We have three sets of parentheses in this case. The first item in each set of parentheses, i.e.
d6 and d0, start at the same time. After d0, p4 on channel f2 and p2 on channel f1 start
simultaneously. Assuming that d6 is larger than d0+p4 and d0+p2, the second line is
executed after d6 has finished.
A final example for rule 3 is a line from the hncocagp3d Bruker pulse program:
(p13:sp4 ph1):f2 (p21 ph1):f3

The shaped pulse p13 on channel f2 is started simultaneously with the rectangular pulse
p21 on channel f3.

Simultaneous Pulses and Delays

H166633_15_015 45 / 128

Figure 5.3: An example for rule 3 - DEPT

See also
2 Rule 3 [} 44]

5.2.4 Rule 4

The example in the previous section can be rewritten according to this rule
(
 (d6)
 (d0 p4 ph2):f2
 (d0 p2 ph4):f1
)
(p3 ph3):f2 (p1 ph5):f1

It still produces the same pulse sequence.

5.3 Pulse Train Alignment

Pulse trains written in the style of rule 4 can be aligned in different ways.

5.3.1 Global Alignment

There are three global alignment possibilities for the pulse trains: left alignment (lalign) is
the default, right alignment (ralign) will arrange the pulse sequences such that all of them
end at the same time, and center alignment (center) will start the pulse trains in such a way
that they are centered according to the mid-point of the longest of them. The global alignment
must be specified after the first opening bracket:
(center
 (d6)
 (d0 p4 ph2):f2
 (d0 p2 ph4):f1
)

5.3.2 Individual Alignment

Single pulse trains can be aligned individually as well. In this case, the first pulse train in a
sequence must be defined as the reference (refalign):
(
 refalign (d0 p1 ph1 d0):f1

Simultaneous Pulses and Delays

46 / 128 H166633_15_015

 center (p2 ph2):f2
 ralign (p3 ph4):f3
)

Pulse train 3 is now right-aligned relative to pulse train 1, pulse train 2 is centered relative to
pulse train 1. From this piece of code several situations may result which are not obvious but
best can be shown graphically: only in 2 of the 6 possible cases the sequence begins with the
reference pulse train, see the next figures.
If the length of individual pulse trains change during pulse program evolution, the alignment
conditions will still be true.

Figure 5.4: Individual alignment with 2*d0+p1 > p3 > p2

Figure 5.5: Individual alignment with p2 > 2*d0+p1 > p3

Figure 5.6: Individual alignment with d0+p1/2 > p3 > p2

Simultaneous Pulses and Delays

H166633_15_015 47 / 128

Figure 5.7: Individual alignment with p3 > 2*d0+p1 > p2

Simultaneous Pulses and Delays

48 / 128 H166633_15_015

Decoupling

H166633_15_015 49 / 128

6 Decoupling

6.1 Decoupling Statements
The next table shows the available types of decoupling statements. Composite pulse
decoupling is discussed in more detail in the next section of this chapter.

cw continuous wave decoupling

hd homodecoupling

cpds1,..,cpds8 composite pulse decoupling with CPD sequence 1, ..., 8,
synchronous mode

cpd1,..,cpd8 composite pulse decoupling with CPD sequence 1, ..., 8,
asynchronous mode

cpdhd1,..,cpdhd8 homodecoupling using CPD seq. 1,...

do switch decoupling off

Table 6.1: Decoupling statements

Each pulse program line can contain one (and only one) decoupling statement. For example,
the line:
d1 cw:f1

turns on cw-decoupling on channel f1 at the beginning of delay d1. The line:
go=2 cpds1:f2

turns on composite pulse decoupling on channel f2 at the start of the FID detection.
Decoupling statements are allowed in pulse program lines that contain a delay statement or
the go statement, but not in lines with pulses, expressions or any lines with any of the
statements adc, rcyc, lo, if or goto.
Once decoupling is turned on, it remains on, until it is explicitly turned off with do. For
example:
0.1u do:f1

turns decoupling off on channel f1.
cpdhd1..8 is used for homodecoupling during the acquisition. It uses the cpd programs
CPDPRG[1..8] but choppsin the HD manner. The decoupling is turned off after the scan
automatically and no do statement is required:
go=2 ph31 cpdhd1:f2

6.2 Decoupling Frequency
The decoupling frequency is selected by specifying the spectrometer channel behind the
decoupling statement. In contrast to pulse statements, decoupling statements must be
specified with a channel. For example:
d1 cw:f2

turns on cw decoupling on channel f2, i.e. with the frequency SFO2. This syntax is the same
as used for selecting pulse frequencies (see the chapter Pulse Frequency [} 21]). The
statement:
0.1u cpds1:f3

Decoupling

50 / 128 H166633_15_015

turns on the composite decoupling sequence 1 on channel f3, i.e. with the frequency SFO3.
The statement:
3m do:f3

terminates decoupling on channel f3 at the beginning of the 3 ms delay.

6.3 Decoupling Phase
The relative phase of the decoupling frequency can be controlled using a phase program.
This is equivalent to controlling the phases of pulses (see chapter Pulse Phase [} 25]).
Examples:
(d1 cpds1 ph2):f3
(0.1u cw ph1):f2

Note that phase cycling (see chapter Phase Cycling [} 26]) is applied to phase programs
specified behind decoupling statements in the same way that phase programs are specified
with pulses.

A simple example demonstrating this feature is the pulse program section:
(1m cw ph1):f2
d1 do:f2

which is equivalent to:
(1mp ph1):f2
d1

A 1 millisecond pulse is executed on channel f2, followed by a delay d1. Its phase is cycled
according to phase program ph1.

6.4 Composite Pulse Decoupling (CPD)

6.4.1 General

Composite pulse decoupling, as opposed to cw and hd decoupling, offers a large degree of
freedom to set up your own decoupling pulse sequences. Up to 8 different CPD sequences
can be used in a pulse program. For example, the line:
d1 (cpds1 ph2):f3 (cpds2 ph4):f2

starts, at the beginning of duration d1, CPD sequence 1 on channel f3 and, simultaneously,
CPD sequence 2 on channel f2. CPD sequence 1 is obtained from a text file defined by the
acquisition parameter CPDPRG[1]. Likewise, CPD sequence 2 is obtained from a text file
defined by the acquisition parameter CPDPRG[2], etc. A CPD sequence (= CPD program)
can be a Bruker delivered sequence like WALTZ16, GARP or BB or it can be a user defined
sequence. CPD sequences can be set up with the command edcpd (as described in the
Acquisition Reference Manual).

cpds1, ... , cpds8 Start decoupling using the CPD program
CPDPRG1, ... , CPDPRG8. The decoupling
sequence will start at line 1.

cpd1, ... , cpd8 Like cpds1-cpds8, however, the decoupling
sequence will continue from the line where it was
stopped using do.

:f1, ..., :f8 Channel selector. To be appended to the cpd
statements.

Decoupling

H166633_15_015 51 / 128

cpdngs1, … ,cpdngs8
cpdng1, ... ,cpdng8

Same as the cpd(s) statements above, except that
the transmitter gate for the specified channel will not
be opened. Gating is controlled by the main pulse
program, and can be tailored by the user.

Table 6.2: Available CPD statements

6.4.2 Syntax of CPD Sequences

The syntax of CPD sequences is demonstrated by examples. Table Table 6.4 [} 52] shows
the realization of Broadband and Garp decoupling with CPD sequences. Each sequence is
an infinite loop as indicated by the last statement:
jump to 1

As in pulse programs, the pulse width in CPD programs can be specified as a fixed pulse,
(e.g. 850up) or with the statements p0-p63. The Garp sequence shows the usage of the lo
to statement. The next table shows the statements available to build a CPD sequence.

p0,.., p63 Generate pulses with durations P[0], ... , P[63].

10up, 5mp, 2.5sp Generate pulses in micro-, milli-, and seconds

pcpd1, ... ,pcpd8 Generate a pulse with duration according to
PCPD[1], ... , PCPD[8], depending on the channel
where the CPD sequence is executed (use eda to set
PCPD).

d0, ... , d63 Generate delays with durations D[0], ... , D[63].

10u, 5m, 2.5s Generate delays in micro-, milli-, and seconds.

*3.5 :135.5 Multiplier. Can be appended to p0-p63 or d0-d63.
Phase in degrees. Can be appended to pulses.

:sp0, ... , :sp63 Shaped pulse selectors. Can be appended to pulses.

pl=5[Watt] pl=sp13
pl=pl25

Power specifier: in Watt according to shaped pulse
parameters SPW[0]-[63] according to PLW[0]-[63]

fq=2357 fq=cnst25
fq=fq2

Frequency change in Hz (relative to SFO1 for channel
1, SFO2 for 2...) from the parameters CNST[0]-[63]
from the frequency list specified in FQ2LIST

; Begin of a comment (until end of line)

go to label Branch to label (forward, see the chapter
Manipulation of Loop Counters during Execution (BILEV
Decoupling) [} 54])

lo to label times n Loop to label n times.

jump to label Branch to label (backward). Usually the last
statement.

#addphase #setphase Special phase control statements

Table 6.3: Statements available to build CPD sequences

The Garp sequence, as well as the sequences in table Table 6.5 [} 52] use the statement
pcpd to generate pulses. This enables the execution of the same sequence for different
nuclei on different channels. For example, when executed on channel f2 (f3), the pulse
duration of pcpd is given by the parameter PCPD[2] and PCPD[3], respectively. This allows
to specify the 90° pulse width for two different nuclei in PCPD[2] and PCPD[3], and
decouple both nuclei within the same pulse program using the same CPD program.

Decoupling

52 / 128 H166633_15_015

Table Table 6.5 [} 52] shows two CPD sequences based on shaped pulses. Shapes are
specified in the same way they are specified in pulse programs using the :sp0, ... , :sp63
pulse selector options. The examples demonstrate the order in which duration multiplier,
shape selector and phase must be specified.

190up:0

160up:180

240up:0

........

570up:0

680up:180

810up:0

960up:180

1140up:0

1000up:180

850up:0

710up:180

.........

200up:0

110up:180

jump to 1

1 pcpd*0.339:0

pcpd*0.613:180

pcpd*2.864:0

pcpd*2.981:180

pcpd*0.770:0

.......

pcpd*0.593:0

lo to 1 times 2

2 pcpd*0.339:180

pcpd*0.613:0

.......

pcpd*2.843:180

pcpd*0.729:0

pcpd*0.593:180

lo to 2 times 2

jump to 1

Table 6.4: Broadband and GARP CPD sequences

1 pcpd*2:sp15:0

pcpd*2:sp15:0

pcpd*2:sp15:180

pcpd*2:sp15:180

pcpd*2:sp15:180

pcpd*2:sp15:0

pcpd*2:sp15:0

pcpd*2:sp15:180

pcpd*2:sp15:180

pcpd*2:sp15:180

pcpd*2:sp15:0

pcpd*2:sp15:0

pcpd*2:sp15:0

pcpd*2:sp15:180

pcpd*2:sp15:180

pcpd*2:sp15:0

jump to 1

1 pcpd*14.156:sp15:60

pcpd*14.156:sp15:150

pcpd*14.156:sp15:0

pcpd*14.156:sp15:150

pcpd*14.156:sp15:60

2 pcpd*14.156:sp15:240

pcpd*14.156:sp15:330

pcpd*14.156:sp15:180

pcpd*14.156:sp15:330

pcpd*14.156:sp15:240

lo to 2 times 2

3 pcpd*14.156:sp15:60

pcpd*14.156:sp15:150

pcpd*14.156:sp15:0

pcpd*14.156:sp15:150

pcpd*14.156:sp15:60

jump to 1

Table 6.5: MLEVSP and MPF7 CPD sequences

The sequences in the tables above Table 6.4 [} 52] and Table 6.5 [} 52] do not contain a
power setting statement. Therefore, the current power setting of the main pulse program for
the respective channel is valid.

Decoupling

H166633_15_015 53 / 128

cpdngs is used for sequences which do not need the transmitter. For instance the dwell time
can be generated in this way (see pulse program zgadc in the Bruker library).

6.4.3 Phase Programs in CPD Programs

In AV III systems phase programs can be used and defined in the same way as in the main
pulse program. Phase program phases are added to the phases defined with the CPD
program and to the phases defined in the shapes. Phase programs defined in CPD programs
and phase programs defined in the main pulse program can be used in both programs. In
CPD programs the incrementation of phase program pointers must be done with the
autoincrement command. Example:
1 p15:sp15 ph21^
 jump to 1
ph21=(360) 0 15 165 180

 The phase program pointer of ph21 can be manipulated in the main program as well if no
autoincrement is used or explicitly with the command ipp21. With this syntax the
performance of the CPD program is best if the total length of the CPD sequence is adjusted
such that shapes are not cut into pieces by the main program. This can be achieved as
illustrated in the following example:
define loopcounter adia
"adia=aq/p15"
define delay aqround
"aqround=p15*adia+1"

1 ze
d11 pl12:f2
2 30m
d1
p1 ph1
ACQ_START(ph30, ph31)
aqround DWELL_GEN:f1 cpd2:f2
100u do:f2
rcyc=2

6.4.4 Frequency Setting in CPD Programs

There are three ways to change the frequency of the channel where the CPD sequence is
applied. Frequency setting in CPD programs is the same as in pulse programs except that
the channel specification after the statement is not necessary.

6.4.5 Frequency Setting from Lists

The first method to set the frequency is using a frequency list. The statements fq1- fq8
interpret the parameters FQ1LIST-FQ8LIST, set the frequency from the current list entry and
move the list pointer to the next entry. In contrast to the lists used in pulse programs, lists
used in CPD programs are expanded at compile time, not at run time. In the following
example, the first fq1 statement uses the first entry of the frequency list, the next statement
the second entry. If the frequency list contains more than 2 entries, only the first two will be
used.
1 pcpd:0 fq=fq1
pcpd:180 fq=fq1
jump to 1

Decoupling

54 / 128 H166633_15_015

Like in pulse programs, the frequency offset can be specified in two ways: either the offset is
at the top of the list in MHz, or no offset is specified in the list. In the latter case, the measure
frequency of the appropriate channel (SFO1 for f1, SFO2 for f2, etc.) is used as list offset.

6.4.6 Frequency Setting Using the Parameters CNST0-63

The statement fq=cnst25 will set the frequency SFO1 + CNST25 [Hz]. The parameter
CNST25 can also be modified from the gs window. If used on channel f2, the basic
frequency SFO2 instead of SFO1 will be used etc.

6.4.7 Offset Frequencies

You can also use the offset frequencies O1 to O8 (in [Hz]) as an rvalue directly in a relation in
the pulse program.
For example,
"spoffs25=bf1*(cnst54/1000000)-o1"

uses O1 to calculate the offset frequency of a shaped pulse.
On the other hand it may also be necessary to calculate and store O1 for indirect dimensions
directly from within the pulse program in order allow a correct automatic processing later on.
In this case, the parameters o1_F1 to o1_F8 [Hz] can be used with F denoting the indirect
dimensions as defined in eda, for example
“o1_F1=cnst25”

In case of a 2D experiment, only o1_F1 can be used whereas in case of a 3D experiment
only o1_F1 and o1_F2 can be used etc.
Assignments for indirect dimensions that actually do not exist for the current experiment are
silently ignored.

6.4.8 Direct Specification of Frequencies

The statement fq=3000 will set the frequency SFO1(2,3...) + 3000 Hz.

6.4.9 Loop Statements in CPD Programs

The general form of a loop statement is:
lo to label times n

where label can be any number. The loop counter n can be a number or a symbolic loop
counter l0 - l31, where the latter interprets the parameters L[0] - L[31]. It must be equal to
or greater than 1.
User defined loop counters from the pulse program can also be used in the CPD program.
For infinite CPD programs (which are terminated from the pulse program by the statement
do:fn) there is a special jump to label statement which executes an unconditional jump
to the specified label. For calculated jumps forward (see next section), there exists the
command go to ln where ln is a loop counter L0 .. L31.

6.4.10 Manipulation of Loop Counters during Execution (BILEV Decoupling)

You can manipulate the loop counter of a CPD program after each scan according to an
arithmetic expression in the following way (this statement must be on the first line of the CPD
program):

Decoupling

H166633_15_015 55 / 128

bilev: "l5=nsdone%4+1"

This means that the loop counter l5 will be modified after each scan according to the above
equation. The modification will take effect immediately after the scan. The expression should
be written such that the loop counter is always greater than zero. The variable loop counter
then can be used within the CPD program such that the first section changes with each scan.
This can be done in two ways:
the CPD program contains a loop using this loop counter.
the CPD program uses a go to instruction to go to a calculated label:
bilev: "l31=nsdone%4+1"
go to l31
1 pcpd*3:180
 pcpd*4:0
...
2 pcpd*2:0
...
3 pcpd*3:180
...

The go to l31 instruction has the effect that the CPD program continues at the label which
corresponds to the current value of the loop counter calculated above. Of course, each
possible loop counter value must have a corresponding label.
A bilev statement in a CPD program automatically changes the CPD statement in the pulse
program into the corresponding cpds. This means that the CPD sequence is not continued at
the point where it was stopped before, but starts from the beginning each time it is called.

6.4.11 Relations in CPD Programs

It is – to a limited extend – possible to use relations in the CPD program in order to modify
pulses, delays, or loop counters.
For example, the following CPD program fragment calculates a pseudo-random value for l31
and varies the length of the following decoupling loop.
1 1up

"l31=random(4,100)+0.5"

 1up

2 p60 :0 pl=pl31

 p60*2:90

 p60 :0

 lo to 2 times l31

Decoupling

56 / 128 H166633_15_015

Gradients

H166633_15_015 57 / 128

7 Gradients
The term gradient refers to a magnetic field gradient that is added to the homogeneous field
of the spectrometer magnet. A gradient is supplied by a gradient coil and can be applied in
the x, y and/or z spatial dimension. If a gradient is applied in the x-dimension, the magnetic
field will be constant within a y-z plane. In the y-z plane through the center of the receiver
coil, the x-gradient field is zero. In a y-z plane at one edge of the receiver coil the x-gradient
field is +M, whereas in a y-z plane at the opposite edge it is -M. Here, M is the maximum
gradient strength which depends on the gradient amplifier. For y and z-gradients, the same
principle holds concerning the x-z plane and x-y plane, respectively.
A rectangular gradient has a constant strength during the time it is applied, whereas a
shaped gradient has a variable strength.

7.1 Rectangular Gradients
A rectangular gradient has a strength that is constant during its execution. It can be created
with one of the statements gron0, gron1, ..., gron31. The statement gron0 creates a
gradient whose strength is determined by the parameters GPX0, GPY0 and GPZ0. Similarly,
gron1 creates a gradient whose strength is determined by the parameters GPX1, GPY1 and
GPZ1 etc. The groff statement switches off all gradients that were switched on by a gron*
statement.
For example, the pulse program section:
300u gron2
1m
100u groff

switches on a gradient defined by GPX2, GPY2 and GPZ2, at the beginning of a 300 μs
delay. This gradient remains on during a period of 1.3 ms.
The parameters GPX0, GPY0 and GPZ0 can be set by entering gpx0, gpy0, gpz0,
respectively, on the command line. As the gradient strength is expressed as a percentage of
the maximum strength, it takes a values between 0 and 100. The parameter, GPX1, GPY1,
GPX2 etc. can be set from the command line in a similar way. Alternatively, you can set all
gradient parameters from the eda window by clicking the GP031 edit button.

7.1.1 Gradient Ramping

Of course in the real world it is not possible to switch rectangular gradients. Therefore it is
possible to define a ramping time within
$XWINNMRHOME/exp/stan/nmr/parx/preemp/$PROBEHEADID/default
($PROBEHEADID is retrieved from $XWINNMRHOME/conf/instr/probehead.)
by editing the parameters RAMPTM.., e.g.
##$RAMPTM=100
RAMPTM > 0 means that a linear ramp is applied (in µs), whereas RAMPTP = 0 switches the
gradients without ramping.

Please note that gron/groff commands always switch the gradients without ramping
(whereas in ParaVision these commands actually do apply a linear ramp).

Gradients

58 / 128 H166633_15_015

7.2 Shaped Gradients
A shaped gradient has a strength that varies during its execution. The gradient strength as a
function of time is called the gradient shape. It is defined by a list of values between -1.0 and
1.0. The number of values in the list defines the number of time intervals. Each element in the
list defines the relative gradient strength during a particular time interval. The interval length
is defined by the length of the entire gradient shape divided by the number of intervals. The
length of the shape (duration) must be specified in the pulse program The gradients are reset
to zero at the end of the shape, if no gradient statement is immediately following.
The following 3 examples generate shaped gradients:
10mp:gp2

p1:gp1

gradPulse*3.33:gp3

They are applied for 10 ms, P[1], and gradPulse*3.33 and are described by the gradient
parameter table entries 2, 1, and 3, respectively. This table can be opened by clicking on the
GP031 button in eda. It has 32 entries with indices 0- 31. The statements :gp0 interprets
entry 0, :gp1 interprets entry 1, etc.
Each entry of the gradient parameter table has assigned 4 parameters: GPX, GPY, GPZ (the
gradient strength multipliers for the 3 spatial dimensions), and a file name (of the file that
contains the gradient strength values).
GPX, GPY, GPZ
These are multipliers with values between 0 to 100. They are applied to the gradient strength
values (which range from -1.0 to 1.0) in the shape file to obtain the total gradient field
strength.
File Name
File name is the name of a gradient file. A gradient file can be generated from Shape Tool
window (command stdisp) or from the command line with the command st (for more
information click Help Online Manual from the Shape Tool window).
Gradient shape files are stored in JCAMP-DX format in the directory:
$xwinnmrhome/exp/stan/nmr/lists/gp/

Note that if you specify an internal gradient shape, you don’t need a shape file, however you
should define the length of the shape as described below.

All gradient parameters can be set from the eda window by clicking the GP031 edit button.
Alternatively, they can be set by entering gpx0, gpy0, gpz0, gpnam0, gpx1 etc. on the
command line. As the gradient strength is expressed as a percentage of the maximum
strength, it takes on values between 0 and 100.
As described in the next section, you can also define gradient shape functions in the pulse
program rather than using shaped gradient files.

7.3 Gradient Lists
You can multiply rectangular, ramped or shaped gradients with list values. At each moment,
the gradient strength is calculated according to the current list value.
The list pointer can be manipulated in the following way:

sin.res; use 1st list value

sin.inc; use next list value

Gradients

H166633_15_015 59 / 128

sin.dec; use previous list value

sin.store; save list pointer (stack with depth=1)

sin.restore; restore the last saved list pointer

The gradient list is defined directly within the pulse program, read from a gradient file (like
gradient shapes) or an internal function that is calculated during pulse program compilation.
In any case a corresponding define list command should be given at the beginning of
the pulse program. For example:
define list<grad_scalar> gl1 = { -1.0 0 0.5 0.75 .9 }

define list<grad_scalar> gl2 = <sin.100> ; read from file
define list<grad_scalar, 100> sin; sine function with 100 values

Internal Gradient Functions:
The following internal functions are available:
1. plusminus

can take the value 1 or -1.
2. r1d, r2d and r3d

linear ramps from -1 to 1, where the final value is never reached.
3. step

linear ramp from 0 to 1 and the final value will always be reached.
4. sin

sine function from 0 to π (excluding π). The angle increment depends on the length of the
function (see above).

5. cos

cosine function from 0 to π (excluding π).
6. sinp

sine function from 0 to π (including π).
7. gauss <truncval>

which is a gaussian function with truncation level (e.g. gauss2.5 for 2.5% truncation
level)

7.4 Manipulation of Rectangular or Shaped Gradients

7.4.1 Manipulation with Functions

Both rectangular and shaped gradients can be manipulated with a constant and/or a gradient
function. Here, manipulation can be addition or multiplication.
Example:
1 300m gron2 * - 0.5 * plusminus
p1:gp1 * sin(100) * cnst0
igrad plusminus
igrad sin
lo to 1 times 100

If a rectangular gradient is manipulated with a gradient function, the latter must be specified
without parameters. For example:
300m gron2 *sin

Gradients

60 / 128 H166633_15_015

If, however, a shaped pulse is manipulated with a function, the latter can be specified with or
without parameters.
Example:
p1:gp1 * sin

p2:gp2 * sin(100)

7.4.2 Manipulation by Recalculation

The gradient parameters GPX0..31, GPY0..31, and GPZ0..31 can be recalculated in relations
during compile time and during runtime.
Example:
“gpz27=cnst23*l2”

7.5 General Gradient Statements
Since the TopSpin gradient software is also used by ParaVision, it has features which were
actually designed for medical imaging. With gradient statements of the form:
delay grad_ramp <options>{<1st dim>, <2nd dim>, <r3d dim>}

delay grad_shape<options>{<1st dim> , <2nd dim>, <r3d dim>}

delay grad_off <options>

you can use these features even without ParaVision, but in a restricted manner:
• You can specify Object Oriented Gradients that are converted into Physical Gradients.

This allows for:
– Acquisition of images with different slice orientation while using the same pulse

program. The gradients may be specified in spatial coordinates other than x, y and z.
The pulse program compiler multiplies the gradients with a rotation matrix (see below)
to get x, y and z.

– Acquisition of images with different slice thickness and field of view, every spatial
dimension may be multiplied by a scaling factor.

• The gradients are defined as a percentage of maximum_gradient strength, as scalar
values or functions, which may be combined by addition and multiplication.

• Gradient lists and shapes are either internal functions, which are handled accordingly by
the compiler, or can be defined directly within the pulse program or read from gradient
files containing the list or shape values (see above).

• Scaling and rotation can be suppressed with the following options:
– rps_coord: Gradient is scaled and rotated. This is the default.
– magnet_coord: Gradient is not scaled and not rotated at all.
– object_coord: To support animal or human patient investigation it is possible to rotate

the gradients according to the position within the magnet. Only this rotation is done.
Examples:
; Apply phase gradient (2nd dimension) = -100, -99, .., 99
; The gradients are switched via a linear ramp within 100 µsec.

define list<grad_scalar,200> r2d
1 ..
1m grad_ramp<100u> {0, r2d*100, 0}
1m grad_off<100u>
..

Gradients

H166633_15_015 61 / 128

r2d.inc
lo to 1 times 200

; Apply a shaped gradient within 500us.
; The shape (indicated by brackets) is read from gradient_file SIINE.32.
; The gradient is rotated from the 1st to the 2nd dimension in 20 steps.

define list<grad_scalar, 20> sin
define list<grad_scalar, 20> cos
define list<grad_shape> gsh1 = <SINE.32>
2 ..
5m grad_shape<500u> {gsh1()*cos*50, gsh1()*sin*50, 0}
1m grad_off
..
sin.inc
cos.inc
lo to 2 times 20

; Apply three saturation slices within the object coordinate system,
; where each slice is defined by a gradient vector, containing the three ;dimensions.
; A vector is indicated by square brackets.
; Lists may contain values, but of course the finally
; value should not exceed 100 %.
; Since no ramp delay is given, the standard ramp is applied
;(see Gradient ramping).

define list <grad_vector> fovSat = { 10.0, 20.0, 30.0,
0.0, 0.0, 50.0,
50.0, 20.0, 0.32 }
3 ..
1m grad_ramp <object_coord> { fovSat[] }
fovSat.inc
lo to 3 times 3

7.6 Rotation and Scaling
Rotation and scaling of the gradients can be done with the elements of the acquisition
parameter CAGPARS. The three first elements define the scaling in read, phase and slice
dimension. The remaining 9 elements define a rotation matrix.
For example table Table 7.1 [} 62]
CAGPARS[0] = 0.5 means 1st (or read) dimension is scaled by 0.5
CAGPARS[1] = 0.5 means 2nd (or phase) dimension is scaled by 0.5
CAGPARS[2] = 0.8 means 3rd (or slice) dimension is scaled by 0.8
CAGPARS[3] = 0.707
CAGPARS[4] = 0.707
CAGPARS[5] = 0.0

means 1st (or read) dimension is rotated 45 degree from x to z.

Gradients

62 / 128 H166633_15_015

CAGPARS[6] = -0.707
CAGPARS[7] = 0.707
CAGPARS[8] = 0.0

means 2nd (or phase) dimension is rotated 45 degree from y to -x.

CAGPARS[9] = 0.0
CAGPARS[10] = 0.0
CAGPARS[11] = 1.0

means 3rd (or phase) dimension is the z direction.

Multiple Rotation Matrices
It is even possible to define and use multiple rotation matrices. But in this case a list named
grad_matrix has to be defined within the pulseprogram, containing multiple 3x3 matrices.
Then instead CAGPARS[3] .. CAGPARS[11] the rotation matrices within this list are used.

Example to scan 3 orthogonal slices:

define list <gradient> grad_matrix =
{ 1, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 1, 1, 0, 0, 0, 1, 0,
0, 0, 1 0, 1, 0, 1, 0, 0 }

slice, ..

grad_matrix.inc ; Next slice orientation
lo to slice times 3

Defining Other Object Coordinate Systems
To support animal or human patient investigation it is possible to rotate the gradients
according to the position within the magnet.
Within the pulseprogram 8 different object coordinate system can be defined.
patient_pos = 0; head first, supine
patient_pos = 1; head first, prone
patient_pos = 2; head first, right
patient_pos = 3; head first, left
patient_pos = 4; feet first, supine (this is the default and neutral setting)
patient_pos = 5; feet first, prone
patient_pos = 6; feet first, right
patient_pos = 7 ; feet first, left
Then the pulseprogram compiler changes the sign of the gradients accordingly and
exchanges x and y if the patient lies on his left or right side.

0.5 0.5 0.8 ;Scaling of 1st (read or x) dimension

0.707 0.707 0.0 ;rotation matrix

Gradients

H166633_15_015 63 / 128

-.707 0.707 0.0 ;gradients are rotated by

0.0 0.0 1.0 ;45 degrees
Table 7.1: Example of a CAGPARS setting

Gradients

64 / 128 H166633_15_015

Relations

H166633_15_015 65 / 128

8 Relations

8.1 The Relation Interpreter
There is a relation interpreter which can be called from the pulse program to calculate
parameters. The interpreter language is "C" with a reduced functionality. Pulse program lines
which are enclosed by double quotes are submitted to this interpreter. The interpreter can be
used either to calculate or recalculate parameters which are used by the pulse program:
"d11=30m"

or to evaluate conditions (boolean expressions):
if "l0%2" goto 5

The second form is used after an ’if’-statement in the pulse program whereas the calculations
should be in separate pulse program lines.
In the relation above, the goto statement will be executed if the content of the condition
evaluates to a value different from zero which is here the case for all od numbers.

8.1.1 Syntax Elements

All calculations are executed using the C-type "double". The usual logical expressions like ’if’,
’else’, ’while’ are available, but the ’do’, the ’switch’ statement and the statement ’else if’
cannot be used. Multiple statements can be put into one line separated by semicolons.

8.1.2 Constants

There are some constants which are understood by the relation interpreter:

DEG 180/PI

E 2.718…

LN10 2.302…

PI 3.141…

RAD PI/180
Table 8.1: Constants in the relation interpreter

8.1.3 Functions

The following mathematical functions can be used:

acos arc cosine

atan arc tangent

asin arc sine

abs absolute value

cos cosine

exp(b) eb

max(a,b) a if a>b, otherwise b

Relations

66 / 128 H166633_15_015

min(a,b) a if a<b, otherwise b

trunc(a,b) truncate a to next multiple of b

tdmax(a,b,c) limit a to b/c

trunc(a) truncate a to next multiple of 1

log natural logarithm

log10 decadic logarithm

pow(a,b) ab

random(a) random var. of a

sin sine

sqrt square root

tan Tangent

kronecker_delta(a, b) 1 if a==b, otherwise 0 (a,b are integer
values)

Table 8.2: Functions in the relation interpreter

The random function takes 2 arguments: the first (a) is the delay which is varied, the second
(b) is the percentage by which the delay is varied.
The resulting value will be in the range from a -b*a/100 to a + b*a/100.
The function tdmax(a,b,c) can be used to calculate the maximum possible td in a constant
time experiment where a = td is the original td, b is the constant time delay and c is the
time increment. The result will be a if b/c is greater than or equal to a, otherwise the result
will be b/c.
The trunc function can be used with 1 or 2 arguments. The second argument can specify a
truncation base value, e.g. trunc(114, 10)= 110. If the second argument is missing the
base is 1.
Please note that arguments of trigonometric functions have to be specified in radians.

8.1.4 Variables

It is not possible to define new variables, instead there are 10 double variables called $d0 ..
$d9 and 10 boolean variables $b0 .. $b9. They can be used to store intermediated results.
Their values are not kept between subsequent calls of the relation interpreter.

8.2 Compile Time and Run Time
The relation interpreter can be called before the start of the pulse program (usually a pulse
program starts with ze) or during pulse program execution. The rules and the effects are
different.

8.2.1 Compile Time

Relations which stand before the first pulse program statement ze are interpreted at compile
time. In these statements more parameters can be used and changed. The changed
parameters are visible in ased and their values are stored after pulse program execution in
the acquisition status parameter set. All parameters which are changed there, will appear in

Relations

H166633_15_015 67 / 128

ased as constant, i.e. their values cannot be changed within the editor since the value set by
the user is overwritten by the calculation within the pulse program. Parameters defined by the
pulse program with a define statement must be assigned a value by such a relation.

8.2.2 Run Time

At runtime only a few parameters can be recalculated. The changed parameters are not
stored in the status parameters. Other parameters can be recalculated but the recalculation
has no effect upon the pulse program.

8.2.3 Parameters

For the list of parameters which are available within relations see the next table.
• Some of them cannot be set but only used on the right-hand side of an equation. They

are marked with 1.
• Some of them can only be used at compile time, not at run time; they are marked with 2.
• Phases in phase programs (ph0-31) can only be calculated and used at runtime. They

are marked with 3.
See also section Phase Program Modifications at Runtime [} 28].

d0-d63 p0-p63 l0-l31 cnst0-63

de1 2 pcpd1-82 nbl sfo1-8 2

deadc 2 gpx0-31 ns bf1-8 2

depa 2 gpy0-31 ds inf1-8 2

dw gpz0-31 td 1 spoffs0-63 2

dwov grpdly2 spincnt 1 spw0-63 2

acqt0 2 acqt0_F1-8 td0 2 plw0-63 2

in0-in63 inp0-63 1 td1-8 2 ph0-31 3

bwfac0-63 1,2 integfac0-63 1,2 totrot0-63 1,2 gradcc1,2

Table 8.3: Parameters in relations

Relations

68 / 128 H166633_15_015

Loops and Conditions

H166633_15_015 69 / 128

9 Loops and Conditions

9.1 The Unconditional goto Statement
This statement has the form
goto label

The pulse program is continued at label which may be either before or after the statement.

9.2 Loop Statements
The general form of a loop statement is:
lo to label times n

Example 1:
label1,d1

p1:f2

lo to label1 times 10

p2:f2

Note that a label can be an arbitrary string, such as label1, followed by a comma, or a
number, such as 2, without a comma. The lo statement in this example, although specified
on a separate line, does not cause an extra delay between the p1 and p2 pulse statements.
Example 2:
label1, p1:f1
label2, d1
 p1:f2
 lo to label2 times 10
 lo to label1 times 5
 p2:f2

The lo statement exists in a number of variations as shown in the next table.

lo to label times 5 The loop counter is a constant.

lo to label times td The loop counter is TD, the time domain size in the
acquisition dimension (to be set with the command td, or in
the left column in eda).

lo to label times
td1

Only used in 2D or 3D pulse programs. The loop counter is
F1-TD (to be set with command 1 td for 2D data sets or in
the right column in eda).

lo to label times
nbl

The loop counter is the parameter NBL (see the
statements wr, st, st0)

lo to label times l0

...........
lo to label times
l31

The loop counter is L[0] - L[31] (to be set with the
commands l0, ..., l31, or the L array in eda). The pulse
program statements iu0- iu31 increment the counters
l0-l31 by 1, du0-du31 decrement them by 1, and ru0-
ru31 reset them to L[0] - L[31].

lo to label times
lclist

The loop counter is taken from a loop counter list which, in
this example, is named lcList (see Chapter ‘Loop
Counter Lists’ [} 70]).

Loops and Conditions

70 / 128 H166633_15_015

lo to label times
myCounter

The loop counter must be defined at the beginning of the
pulse program by means of a define statement and an
expression, e.g. define loopcounter myCounter
“myCounter=aq/10m +1“ The result of the expression
must be dimensionless.

Table 9.1: The lo statements

Example 3:
 ze

label1, (d1 p1):f1

 lo to label1 times l2

 1u iu2

 p2:f2

 go=label1

Assume the parameter L[2] is set to 1 using the command l2 1, or by setting L[2]=1 in eda.
Then, (d1 p1):f1 would be executed once before scan 1, twice before scan 2 etc. The lo
statement does not cause an extra delay in the sequence. The increment statement iu2 is
executed during the specified 1 μs delay. You could alternatively replace the loop counter l2
with a loop counter list (see Chapter ‘Loop Counter Lists’ [} 70]) and replace iu2 with the
respective increment operator of the list to use the number of loops specified in a list file.
Example 4:
define loopcounter myCounter

“myCounter=aq/10m +1“

 ze

label1, (d1 p1):f1

 lo to label1 times myCounter

 go=label1

Here the variable myCounter represents a loop counter. An arithmetic expression assigns a
value to it: the parameter AQ, divided by 10 ms, plus 1. Please note that the compiler rounds
the floating point quotient aq/10m automatically to the numerically adjacent integer value.
This is different to older versions of TopSpin (< 3.0) where a floating point value was simply
truncated instead of rounded. The expression may include any of the parameters shown in
table Parameters in relations.

9.3 Loop Counter Lists
A list of loop counters can be specified with a define statement in the following way:
define list<loopcounter> lcList = {1 2 3}

This statement defines the loop counter list lcList with the values 1,2 and 3. Instead of
explicit loop counter values, you can specify a list filename in the defined statement.
There are two way of doing this:
You can either specify the actual filename or the token $VCLIST, both in <>. In the latter
case, the file defined by the acquisition parameter VCLIST is used.
For example:
define list<loopcounter> ll1 = <myLoopCounterList>

define list<loopcounter> ll2 = <$VCLIST>

Loops and Conditions

H166633_15_015 71 / 128

In both cases, the file can be created or modified with the command edlist vc. In a pulse
program that contains the statements above, the statement
ll1

executes a loop counter of 1 the first time it is invoked.
In order to access different list entries, the list index can be incremented by adding .inc,
decremented by adding .dec or reset by adding .res. Index operations are performed
modulo the length of the list, i.e. when the pointer reaches the last entry of a list the next
increment will move it to the first entry.
The operators .len and .max can be used in relations to access the length of the list or
even its respective maximum value (see examples below).
Furthermore, a particular list entry can be specified as an argument, in square brackets, to
the list name.
For example, the statement:
ll1[1]

executes a loop counter of 2 in our example above. Note that the ndex runs from 0 to n-1,
where n is the number of list entries.
Finally, you can set the index with an arithmetic expression within double quotes using
the .idx postfix. The following example shows the usage of an initialized loop counter list:

define list<loopcounter> lcList = { 2 3 4 6 }

lo to 1 times lcList ; loop to label ‘1’ for 2 times

lcList.inc ; loop counter of 3, set index to 1

lo to 1 times lcList[2] ; use loop counter of 4

"lcList.idx = 3" ; set list index to 3 (i.e. a loop counter of 6)

"l3 = locallist.len" ; set loop counter 3 to length of list (which
is ‘4’ in our example)

“l3 = locallist.max" ; set loop counter 3 to maximum value of
list (which is ‘6’ in our example)

9.4 Conditional Pulse Program Execution

9.4.1 Conditions Evaluated at Precompile Time

Consider the pulse program at the left part of the next table:

#define PRESAT 1 ze
2 d11
3 0.1u
#ifdef PRESAT
d12 pl9:f1
d1 cw:f1
d13 do:f1
d12 pl1:f1
#endif
p1 ph1
d0
p0 ph2
go=2 ph31

#define PRESAT 1 ze
2 d11
3 0.1u
#include <Presat.incl>
p1 ph1
d0
p0 ph2
go=2 ph31
d11 wr #0 if #0 id0 zd
lo to 3 times td1
exit

Loops and Conditions

72 / 128 H166633_15_015

d11 wr #0 if #0 id0 zd
lo to 3 times td1
exit

Table 9.2: Using #define, #ifdef, #include statements

It combines two experiments in one pulse program, a simple Cosy and a Cosy with
presaturation during relaxation. The required pulse program statements to select or deselect
presaturation are:
#define aFlag
#ifdef aFlag
#ifndef aFlag
#endif

and correspond to C language pre-processor syntax where it is mandatory that the "#" is the
very first character on the line. Note that aFlag is just a place holder, it can be any name. If
the pulse program contains the statement:
#define aFlag

the identifier aFlag is considered to be defined, otherwise it is considered to be undefined. If
aFlag is undefined, the statement:
#ifdef aFlag

causes the pulse program to ignore all subsequent statements until the statement:
#endif

If aFlag is defined, these statements will be executed. The statement:
#ifndef aFlag

has the opposite effect.
In table Using #define, #ifdef, #include statements [} 71], #define PRESAT enables the
presaturation statement block. Commenting out this line in C-syntax style (/*#define
PRESAT*/), (not in pulse program style ;#define PRESAT), would make the PRESAT flag
undefined, and the presaturation block would not be executed.
The #ifdef and #ifndef statements are evaluated by a pre-processor. The pulse program
compiler will use the pre-processed pulse program. For this reason, these statements do not
cause any timing changes. You can view a pre-processed pulse program from the pulse
program view. Just click the “S” in the tab PulseProg. Note that in the pre-processed pulse
program, all conditional statements beginning with a ’#’ have been replaced.
The example could be extended to include double quantum filtering. For this purpose, an
additional flag (e.g. #define DQF) could be defined.
The right part of table Using #define, #ifdef, #include statements [} 71] shows the same pulse
program in a more condensed form. The presaturation block is now contained in a separate
file, Presat.incl, which is included with the #include statement.

9.4.2 Setting of Precompiler Conditions

Conditions can be set or unset not only within the pulse program but also on the command
line with the zg command using the option -D. For example, the command zg -DDQF has the
same effect as the line:
#define DQF

at the beginning of the pulse program. The argument must follow the -D option with or without
white space in between. The -D option can be given more than once. As an alternative to
command line options to zg, you can also set the acquisition parameter ZGOPTNS. Once
this parameter is set, the corresponding option is used by zg and go. Thus, setting
ZGOPTNS to "-DDQF -DPRESAT" and typing zg has the same effect as the command zg -
DDQF -DPRESAT.

Loops and Conditions

H166633_15_015 73 / 128

All statements beginning with a ’#’ character must start at the beginning of a line. Spaces or
tabs before ’#’ are not allowed.

9.4.3 Macro Definitions

You can use the statement #define not only to define a flag, but also, as in C language, to
define a macro.
Example 1:
#define macro1 (p1 d1) (p2):f2
macro1

This pulse program section is equivalent to:
(p1 d1) (p2):f2

Example 2:
#define macro2 (p1 d1) \n\
 (p2):f2
macro2

This pulse program section is equivalent to:
(p1 d1)
(p2):f2

The definition of macro2 extends over 2 lines using the \n\ character sequence. In example 1,
p1 and p2 start at the same time, while in this example p2 starts after (p1 d1) has finished.
Example 3:
#define macro3 (p1 d1) \n (p2):f2
macro3

This pulse program is equivalent to:
(p1 d1)
(p2):f2

The definition of macro3 requires only one line. However, the \n character sequence enforces
a new line when the macro is evaluated. As such, the pulse programs of the examples 2 and
3 are identical.
Attention: Macro symbols are replaced by the body of the macro everywhere in the text, even
in comments and strings. If you use a macro in a comment, where you don’t want it to be
replaced, you should use a C-style comment instead.
Example 4:
; the macro3 produces two pulses on two channels

This will be expanded by the precompiler to
; the (p1 d1)
(p2):f2 produces two pulses on two channels

which will produce a syntax error. The following statement is correct:
/* the macro3 produces two pulses on two channels */

because the C-precompiler removes the line entirely.

9.4.4 Conditions Evaluated at Compile Time

Whereas conditions controlled by #if statements are evaluated at precompile time,
conditions controlled by if statements are evaluated at compile time.

Loops and Conditions

74 / 128 H166633_15_015

The if statement can be used in connection with the parameters L[0] - L[31] as shown in the
following example:

if (l7==0) if l7 is zero

if (l8!=0) if l8 is not zero

if (l9 op(arithmetic expression)) op can be ==, !=, >, <, >=, or <=

Table 9.3: Different compile time conditions

The condition must be followed by an if-block and, optionally, can be followed by an else-
block. The statement ‘else if’, as it is used in C language, is not allowed in pulse
programs.

if (l5 > 2)

{

 p1 ph1

}

else

{

 p1 ph2

}

Table 9.4: A condition evaluated at compile time

The if-block is executed if the condition is true at compile time; in the above example if l5 is
greater than 2, p1 is executed with phase program ph1, if not, it is with phase program ph2.
If l5 changes during the experiment, and the condition becomes false, the execution mode
doesn‘t change.

9.4.5 Conditions Evaluated at Run Time

In this case the condition can be either a trigger input or a parameter relation. The
spectrometer has four trigger inputs. Trigger events can be positive or negative edges or
levels.
TopSpin supports branching and evaluation of conditions within a pulse program while the
pulse program execution is in progress.

goto label Unconditional jump to label

if expression goto label Branch to label if expression is true.

if (trigpe2) goto label

if (trigne3) goto label

Branch to label if the trigger condition is true.
Please note that only trignl (1-4) can be used in
this kind of if-statement

if(trigpl3)

{

10u

}

else

{

20u

Executed first or second block depending on
whether the trigger condition is true.
Please note that only trigpl (1-4) can be used in
this kind of if-statement

Loops and Conditions

H166633_15_015 75 / 128

}

aDelay trigpe1

aDelay trignl2

aDelay trigpl3

aDelay trigpn4

In this construct all trigger specifiers (trigpl,
trignl, trigpe, trigne) are allowed. The
next pulse program statement will not be executed
until the trigger condition becomes true.

Table 9.5: Conditional pulse program execution

The table above lists some possible statements. Triggers can be either a positive (p) or a
negative (n) level (l) or a positive or negative edge (e) in the incoming signal of one of the 4
inputs 1-4. These statements do not cause a delay in the pulse program. Triggering on a
level only makes sense where the program waits for a certain condition. At run time, pre-
evaluation is performed during the cycle time of the loops in which the statements are
embedded. If, in a particular pulse program, loops are executed too fast, a run time message
is printed.
Example 1:
 ze
lab1, d1
 p1
 d0
 if "d0*2 + 7m > 500m" goto lab2
 p2
 "d0 = d0 + 10m"
lab2, go=lab1

Assume that we will start with d0=10m. The pulse p2 will no longer be executed when the
expression “d0*2 + 7m > 500m“ becomes true.
Example 2:
 ze
lab1, if (trignl2) goto lab3
lab2, d1
 p1
 aq
 lo to lab2 times ds
 goto lab1
lab3, d1
 p1
 go=lab1

The spectrometer has 4 trigger input channels numbered 0-3 and corresponding to the trigger
commands 1-4; signals arriving there can be checked using the trig specifiers. This
example performs DS dummy scans to maintain steady state conditions as long as no
negative level is detected on input channel 2. If such a level is detected, NS data acquisition
scans are executed, then the pulse program again checks the external trigger signal.
Example 3:
 ze
lab1, d1 trigpl2
 p1
 go=lab1

This example starts executing the pulse sequence as soon as a positive level is detected on
input channel 2. After each scan, the pulse program will wait until the next trigger signal is
detected.
Example 4:
 ze

lab1, d1

Loops and Conditions

76 / 128 H166633_15_015

 p1

 lo to lab1 times l2

 0.1u iu1 ; count number of scans
 0.1u iu2 ; increment l2
 if “l1 <= 3“ goto lab2 ; if scancounter < 4
 0.1u ru2 ; reset l2 to L2
lab2, go=lab1

This example repeats the sequence (d1 p1) L[2] times before scan 1, L2+1 times before
scan 2, and L2+2 times before scan 3. Then, l2 is reset to its initial value L[2]. Before all
remaining scans the sequence (d1 p1) is generated L[2] times. L[1] must be set to 1 before
starting the sequence. Note that the branching of pulse programs cannot be repeated without
a larger delay between the 2 branches.

9.5 Suspend/Resume Pulse Program Execution and
Precalculation
TopSpin allows you to stop (suspend) the pulse program execution at specified positions in
the pulse program. Pulse program suspension can be done conditionally or unconditionally
using the statements shown in the next table.

suspend stop execution on the command suspend

autosuspend stop execution

calcsuspend stop precalculation and stop execution on suspend

calcautosuspend stop precalculation and stop execution

stop_calc stop precalculation

resume_calc resume precalculation

Table 9.6: Statements to suspend pulse program execution

After suspension, the program execution can be resumed with the TopSpin command
resume.
If you use suspend or autosuspend, you should not try to change any acquisition
parameters between suspending and resuming the acquisition, because this will not have the
wanted effect. The reason is that the acquisition uses the principle of precalculation which
means a part of the pulse program is interpreted (precalculated) before it is actually
executed. After resume, the precalculated part which was calculated before the parameter
change is executed without considering the parameter change.
The statements calcsuspend or calcautosuspend, however, stop precalculation. Here
you can change parameters between suspending and resuming the acquisition. Note that you
must specify a delay which is long enough to start and do a reasonable amount of
precalculation after resume.
Example:
calcsuspend
2s

If, after resuming the acquisition, you would get the error message "timing too short", you
must increase this delay.

Loops and Conditions

H166633_15_015 77 / 128

9.5.1 Changing Parameters Interactively during Pulse Program Execution

For pulse programs where parameters should be changed interactively during pulse program
execution, there exist two commands to control the precalculation of the pulse program.
Normally, the program precalculates as much of the pulse program as possible. If any
parameter is to be changed, the effect of this change would not become effective until all
code which has been precalculated up to this time has been executed. To restrict the amount
of precalculation, the command stop_calc can be used. Of course, before program
execution reaches this point, the precalculation must be resumed. For this purpose the
command resume_calc must precede the stop_calc. The time between these two
commands must be long enough to allow for a sufficient amount of precalculation.
Parameters which are changed after stop_calc and before resume_calc become efficient
immediately in the code after stop_calc. To enable the changing of parameters the pulse
program must be started not with zg but with zg interactive instead.
Parameters which can be modified with the current version are SPOFFS0-63, SPOAL0-63,
SPW0-63, and the shape itself (but not the shape file name).
Additionally, the frequency SFO1 as well as pulse lengths (parameter P), delays (parameter
D) and loopcounters (parameter L) can be modified provided that they are used in the pulse
program and are not explicitly defined by a relation like “d1=200u”.
A parameter change can also be triggered by entering the following command into the
topspin command line:
sendirptcmd gsload <parameter>#<new value>

For example, the following command would set d1 to 0.1sec:
sendirptcmd gsload D1#0.1

In order to trigger a parameter change in an AU-program the command sendgui has to be
prepended:
CPR_exec(“sendgui sendirptcmd gsload D1#0.1”, WAIT_TERM);

9.6 Pulse Program Execution on Independent Channels
For current spectrometers each pulse program channel is executed on its own processor.
Normally all these processors execute the same pulse program but only that part of the pulse
program which is relevant for the specific channel.
In certain situations it is desirable that each channel executes its own code, and only after
some time all channels continue with the common part of the pulse program.

exec_on_chan:t1:f1:f2:g1 execute only on specified channels

exec_on_other executed on remaining channels

exec_wait wait for other channels to finish before
continuing

exec_enable (obsolete)

Table 9.7: Commands for independent channels

The following commands have to be used to control the program flow:
A channel is specified first with the command exec_on_chan followed by the channel
specification. This is as usual :f1-:f8 for frequency channels, but you may also specify the
timing controller as :t1 and the gradient controller as :g1. The sequence must end with the
command exec_wait which waits until all other channels have also been reached their
exec_wait statement before continuing.

Loops and Conditions

78 / 128 H166633_15_015

The code for the remaining channels is specified in one or more additional exec_on_chan/
exec_wait blocks. Please note that - in contrast to AVIII spectrometers – it does not have to
be considered anymore which channel is more time-consuming, i.e. it is not necessary to use
a separate the exec_enable statement for the channel whose execution time is the longest.
The example below shows a program where two loops with different timings are executed
independently on two channels.
10u

exec_on_chan:t1:f1 ; on channel TCTRL and F1
4 p1:f1 ph1
d1
lo to 4 times l1

exec_wait ; end of TCTRL - F1
exec_on_other ; on all other channels (F2, ... GCTRL)
5 p2:f2 ph2
p9:gp2
d2
lo to 5 times l2
10u

exec_wait ; end of channel specific code
10u

This structure can be used for more than two channels as well. As exec_wait uses firmware
triggers on the spectrometer this may lead to a seemingly wrong timing of the execution
blocks relative to each other in the simulation when running hpdisp. However, this does not
reflect the real workflow of the pulse program on the spectrometer but is a shortcoming of the
simulation which cannot properly include the delays of the firmware triggers.

9.7 Rotor Triggering in Pulse Programs
The following commands can be used to synchronize the pulse program execution with an
external periodic signal - the principal application is the rotor synchronization in MAS
experiments:

spincnt_use1..4 use trigger input 1..4 for commands header

store_spinrate_d0..63 Measure rotor period and store in
d0..63

pulse pr.

spincnt_measure measure time to next rising edge of
trigger input

pulse pr.

spincnt_start start timer pulse pr.

spincnt_wait start timer and wait for trigger pulse pr.

Table 9.8: Commands for rotor controlled experiments

spincnt_use1 means that the all spincnt commands will use trigger input 1. This command
must appear in the header of the pulse program to enable the spincnt logic. If the
spincnt_use is encountered in the pulse program, the hardware will measure the time
between 2 trigger signals on trigger input. This can be used to measure the rotor period, i.e
while such a programm is running the rotor period can be examined with the TopSpin
command spincnt.
store_spinrate_d31 is used to measure the time of one rotor period and store it in the
parameter D31.

Loops and Conditions

H166633_15_015 79 / 128

spincnt_measure measures the time from the point in the pulse program to the next rising
edge of the trigger signal (the start of the next rotor period). This time is stored in a register
and delays the trigger signal after the commands spincnt_wait or spincnt_start.
The parameter SPINCNT determines how many rotor periods the trigger signal is delayed
after the commands spincnt_wait or spincnt_start.
spincnt_wait waits for the trigger, then counts down the rotor periods according to
SPINCNT and the sync delay if there was a command spincnt_measure before. after this
the pulse program is continued.
spincnt_start does the same, but the trigger command trigpe at which the pulse
program continues has to be added somewhere after the spincnt_start. Between these
two commands there may be other delays and pulses whose length must not exceed the
delay determined by SPINCNT.
The following pulse program examples show how these commands can be used to
synchronize the pulse program execution with an external periodic signal.

9.7.1 Wait for Defined Number of Rotations

The following pulse program waits SPINCNT rotations before applying the next pulse:
spincnt_use4 ; use trigger input 4
...

2 d1

...
1u spincnt_wait
p1
go = 2

Figure 9.1: Pulse starts immediately after 2 rotation periods

The figure above shows the execution flow for SPINCNT = 2.

9.7.2 Wait for Defined Number of Rotations and a Sync Delay

The following pulse program uses an extra delay between the rotor clock and the pulse:
spincnt_use3 ; use trigger input 3

10u

10u spincnt_measure ; measure sync delay
p1
...
2 d1
...

1u spincnt_wait ; wait for SPINCNT rotations
 ; + sync delay

Loops and Conditions

80 / 128 H166633_15_015

p1
go = 2

Figure 9.2: Pulse starts after sync delay

Figure Figure 9.2 [} 80] shows the execution flow for SPINCNT = 0 and figure Figure 9.3
[} 80] shows the execution flow for SPINCNT = 3.

Figure 9.3: Pulse starts after spincnt rotor periods and sync delay

9.8 Synchronization of a Pulse to a Constant Rotation Angle
Using the features described in the two experiments above one can ensure that a sequence
is always started at the same position of the rotor (constant angle) independent of the spin
rate:
1. Measure the period of the rotation
2. Calculate the delay used between the begin of one rotation period and the start of the

sequence.
The following pulse program demonstrates a pulse which is positioned in the middle of the
rotation period:
spincnt_use3 ; use trigger input 3 for
 ; the rotor clock signal

1 1m ; wait several periods
 ; of the rotor clock
10u store_spinrate_d31 ; read rotation period
 ; into delay d31
d5 ; if d5 is too short
 ; expect 'empty FIFO' error
1u

"d30 = (d31-p1) / 2" ; calculate d30 ~ 50% of
 ; the rotation period
2 d31 ; wait 2 periods
d31

Loops and Conditions

H166633_15_015 81 / 128

1 spincnt_wait ; wait for SPINCNT rotations
d30 ; move p1 below into the center of the rotation period
p1
go = 2

Figure 9.4: Pulse starts after 1 rotation period in the middle of the next

The figure above shows the execution flow for SPINCNT = 1 and the next figure for SPINCNT
= 0.

Figure 9.5: Pulse starts in the middle of the next rotation period

store_spinrate_dn reads the rotation period at run time (during execution of the pulse
program by the sequencer) while the relation which determines the angle delay (D30 in the
example above) is calculated during load time (executed by the DSP). Therefore it is
necessary to stop loading before the relation, and to continue loading after the period has
been read. This is done automatically by the DSP when the command
store_spinrate_dn is reached. However, since the loading is stopped while the
sequencer is running the DSP may need some time to calculate the next lines of the
pulseprogram after the loading is continued. This time should be spent together with the
spinrate_measure command (see d5 in the pulse program shown above).
You must wait at least one complete period between the start of the pulse program and the
command store_spinrate_dn. Otherwise the delay where the period is stored will be
zero.

Due to the execution delay of the SGUs there is always a lag of 10 µs after trigger actions
(e.g. between the pulse command from the F-controller and the appearance of pulse at the
output of the SGU). This should not lead to problems though, as the experiments do not rely
on the absolute position of the rotor.

Loops and Conditions

82 / 128 H166633_15_015

Data Acquisition and Storage

H166633_15_015 83 / 128

10 Data Acquisition and Storage

10.1 Start Data Acquisition
TopSpin provides 5 basic pulse program statements to start data acquisition:
go=label, gonp=label, gosc, goscnp and adc.
The most commonly used statement is go=label. Actually, go is a macro statement, i.e. it
includes a number of different actions required for data acquisition. The statement adc can
be used to control fine details of the acquisition process. All five acquisition statements place
the digitized signal into a memory buffer. The wr statement, described in a later section,
writes the buffer contents to disk.

10.1.1 The Statements go=label, gonp=label, gosc, goscnp

The left column of the table Table 10.1 [} 84] shows a simple example of how to use
go=label in a pulse program. All go type statements perform the 8 actions described below.
A parallel sequence of 5 pre-scan subdelays is executed (see the description of DE1/ DERX/
DEPA/DEADC in the Acquisition Reference Manual). Note that all these delays end
simultaneously, at the end of DE. The sequence in which the actions are performed, depends
upon the length of the individual delays. The sequence must be
1. At the end of DE-DEPA (preamplifier blanking delay), the preamplifier is switched to

observe mode.
2. At the end of DE-DERX (delay for receiver blanking) the receiver gate is opened.
3. At the end of DE-DE1, the intermediate frequency (if used) is added to the frequency of

the observe channel and the observe SGU switches from transmit to observe mode. This
corresponds to the execution of the statement syrec.

4. At the end of DE- DEADC (delay for ADC blanking), the digitizer is enabled.
5. After a total delay of DE the digitizer is started. Please refer to the description of the

parameters DW/DWOV/DIGMOD on how the sampling rate is selected. The result will be
a digitized FID signal of TD data points, where the time domain size TD is defined by the
user (from eda, or by typing td). The FID will be put into the current memory buffer. The
contents of memory buffers can be transferred to disk with the wr pulse program
statement or with the tr command. The section Acquisition memory buffers discusses
the usage of memory buffers and the size restrictions of TD.

6. At the time the digitizer is started, a delay AQ is executed. This delay lasts until the
digitization of the FID is finished.

7. A delay of 1.4 μsec is executed. During this time the following tasks are performed:
– a) The scan counter, visible during real time FID display, is incremented to inform the

user about the number of scans performed since the last executed ze or zd
statement.

– b) The frequency of the observe channel is switched back to the frequency of the
observe nucleus. This corresponds to the execution of the statement sytra (which is
inverse to syrec).

– c) The pointers of all phase programs are incremented to the next phase,
corresponding to the execution of the statements ipp0, ... , ipp31. This step is
skipped by gonp=label and goscnp.

– d) The statements go=label and gonp=label perform a loop to label, whereas
gosc and goscnp do not loop. The pulse program statements between label and
go or gonp are executed DS+NS times. During the first DS loops (dummy scans to

Data Acquisition and Storage

84 / 128 H166633_15_015

achieve steady state conditions), the digitizer is not activated. In all other respects,
the dummy scans are identical to the NS data acquisition scans. If no dummy scans
are desired, DS must be set to 0.

– Please note: Even if DS > 0, no dummy scans will be executed if the pulse program
statement zd (rather than ze) was executed before a go loop is entered (see the
description of ze and zd). This feature is, for example, used in 2D experiments where
dummy scans are only required before the first FID is measured.

– e) Commands after an additional finally statement are executed during this delay.
In this way decoupling can be switched on during the acquisition time only and need
not be terminated outside the go command.

1 go=2 ph31 Receiver phase = ph31, realized
via add/subtract and channel A/B
switching. Allowed phase values:
0, 90 180, 270 degrees.

2 go=2 ph30 :r Receiver phase = ph30 + PH_ref,
realized via the phase of the
reference frequency of the
observe channel. Allowed phase
values: any.

3 go=2 ph31 ph30:r Combination of (1) and (2). The
receiver phase is the sum: ph31 +
ph30 + PH_ref

4 go=2 ph31 ph30:r cpd1:f2 Decoupling starts at the same
time the receiver is opened, and
automatically stops when the loop
is executed.

5 go=2 ph31 ph30:r cpd1:f2 ph29 As example 4, with a phase
program for the CPD sequence.

6 go=2 cpd1:f2 finally do:f2 As example 4, but decoupling
ends after the acquisition time

Table 10.1: Examples of the usage of the go or gonp statement

The table above shows that the go statements can be specified in conjunction with other
statements. PH_ref is an acquisition parameter to be set by the user.

10.1.2 The Statements rcyc=label, rcycnp=label

The statement rcyc executes step 7 of the actions performed by go=label and
gonp=label (see the previous section). The rcycnp statement skips step 7c.
The rcyc statements can be used for acquisition loops based on adc rather than go=label
or gonp=label. You must not specify phase programs behind rcyc and rcycnp.
Decoupling statements are allowed although it would not make sense to use them here. The
table Table 10.4 [} 87] shows an example of an acquisition loop with rcyc. Note that the
adc statement is part of the DE1 macro statement.
The rcyc statements can also be specified behind a delay, e.g. 100u rcyc=2. They are
then executed during that delay instead of the default 1.4µsec. The specified delay must be
at least 1.4µsec of course.

Data Acquisition and Storage

H166633_15_015 85 / 128

10.1.3 The Statements eosc, eoscnp

The statement eosc executes steps 7a - 7c of the actions performed by go=label and
gonp=label (see the previous section). The eoscnp statement only executes steps 7a and
7b.
The eosc statements can be used in pulse programs with data acquisition based on adc. In
contrast to rcyc, you must add the appropriate loop statements.
You must not specify phase programs behind eosc and eoscnp. Decoupling statements are
allowed but it would not make much sense to use them here. The table Table 10.4 [} 87]
shows an example of an acquisition loop based on eosc. Note that the adc statement is part
of the DE1 macro statement.
The statement eosc or eoscnp can also be specified behind a delay of at least 1,4 μsec,
e.g.:
100u eosc

In that case, they are then executed during the specified delay rather than during the default
1,4 μsec.

See also
2 The Statement adc [} 85]

10.1.4 The Statements ze and zd

The statements ze and zd perform the following actions:
1. They set the scan counter, which is visible during real time FID display, to 0 or to -DS. A

negative value indicates that dummy scans are in progress.
2. They set a flag which triggers the next go, gonp, gosc, goscnp, or adc statement to

replace any existing data in the acquisition memory rather than add to them. This counts
for all NBL memory buffers. If ze or zd are placed outside an acquisition loop, the replace
mode will only be valid for the first scan performed by the loop. The FID’s of all the scans
that follow will be added to the data present in the memory buffer.

3. The statement zd automatically resets all phase program pointers to the first element,
whereas the statement ze sets all phase program pointers such that they are at the first
element after DS dummy scans.

4. The difference between ze and zd is that zd prevents the execution of dummy scans by
go, gonp, gosc, goscnp, and by adc (combined with rcyc or eosc), even if DS > 0.

The statements ze and zd can be written behind a delay statement. They are then executed
during the delay. If they are not specified with a delay their execution will require 3 ms.
The statement zd is normally part of one of the specifications of the mc macro statement.
One example where it is specified explicitly is the pulse program selno.

10.1.5 The Statement adc

The statement adc starts the digitizer and, at the same time, opens the receiver. Please refer
to the description of the parameters DW/DWOV/DIGMOD in the Acquisition Reference
Manual for information on how the sampling rate is calculated. The result of adc will be a
digitized FID signal of TD data points. TD is an acquisition parameter that must be set by the
user. The FID will be placed in the current memory buffer (see the section Acquisition
memory buffers).
When you use the adc statement rather than go, you must consider the following:

Data Acquisition and Storage

86 / 128 H166633_15_015

• Whereas the go statement automatically executes the required switching delays, these
must be specified explicitly when you use adc. For this purpose, the macros DE1, DE2,
DE3, DEPA, DERX and DEAC are available. They are defined in the file De.incl that can
be included in the pulse program with the statement:

• #include < De.incl>
• The contents of this file is shown in the next table.

define delay rde1
define delay rdepa
define delay rderx
define delay rdeadc

"rde1=de-de1;"
"rdepa=de-depa;"
"rderx=de-derx;"
"rdeadc=de-deadc;"

#define DE1(phrec) (rde1 de1 adc phrec syrec)
#define DE2(phref) (1u 1u phref:r):f1
#define DE3 (de)
#define DEPA (rdepa depa RGP_PA_ON)
#define DERX (rderx derx RGP_RX_ON)
#define DEADC (rdeadc deadc RGP_ADC_ON)

#define ACQ_START(phref,phrec) DE1(phrec) DE2(phref) DERX DEADC
DEPA DE3

Table 10.2: The contents of the file De.incl for AV and AV-II spectrometers

Note that adc is implicitly defined with DE1

Here, the statement de executes the delay defined by the acquisition parameter DE. The
statements de1, derx, deadc and depa execute a delay that is defined by the
corresponding edscon parameters.

define delay rde1

"rde1=de-de1"

#define DE1(phrec) (rde1 sync de1 adc phrec syrec)

#define DE2(phref) (1u 1u phref:r):f1

#define DE3 (de)

#define ACQ_START(phref,phrec) DE1(phrec) DE2(phref) DE3

Table 10.3: The contents of De.incl for AV-III spectrometers

In the case of an AV-III spectrometer, the three delays DEPA, DERX and DEADC are
generated automatically by the hardware and can be replaced by one single DE2. The DE1
and DE2 macros have the arguments phrec and phref which are used to define the phase
program used by the receiver and the reference frequency, respectively. The latter phase
program can be specified after the go macro using the syntax phnn:r.

Data Acquisition and Storage

H166633_15_015 87 / 128

ze

2 d1

(p1 ph1):f1

;---------

go=2 ph31

;--------

wr #0

exit

#include De.incl

ze

2 d1

(p1 ph1):f1

;------------------

DE1 DEPA DERX DEADC DE3

aq DWELL_GEN

rcyc=2

;------------------

wr #0

exit

#include De.incl

ze

2 d1

(p1 ph1):f1

;------------------

DE1 DEPA DERX DEADC DE3

aq DWELL_GEN

eosc

lo to 2 times ns

;------------------

wr #0

exit

Table 10.4: The same pulse program based on go, adc/rcyc, and adc/eosc

• For end-of-scan handling, you must specify one of the statements eosc, eoscnp, rcyc,
or rcycnp. Multiple adc statements can be used in conjunction with, for example, a
single eosc statement. The table above shows the same pulse program realized via
go=label, adc in conjunction with rcyc, and adc in conjunction with eosc.

• You must enable the intermediate frequency using the statement syrec.
• The dwell time is generated during aq. For Avance-AQS, the dwell time is generated on

the SGU with the macro DWELL_GEN.
For an example of how to use the adc statement rather than go, please have a look at the
Bruker pulse program zgadc (enter edpul zgadc). This program will produce exactly the
same result as the program zg.

10.1.6 The Receiver Phase

In pulse programs using the adc statement, the receiver phase must be specified behind
adc, e.g.:
adc ph31

This statement tells the receiver which phase is to be used for the next scan to account for
the receiver phase setting. Note that there must be sufficient time between the end-of-scan
interrupt signal of one scan and the receiver phase interrupt signal of the next scan.
Normally, the recycle delay is long enough for this purpose. However, for some applications
(like imaging experiments) the recycle delay can be too short for correct interrupt handling. In
that case, the

1 ...

 ...

2 d1

 10u adc ph31

 aq DWELL_GEN:f1

 rcyc=2

 10u ip31

 lo to 1 times l1

 ...

1 ...

 ...

 2u recph ph31

2 d1

 10u adc

 aq DWELL_GEN:f1

 d2 rcyc=2

 10u ip31

 lo to 1 times l1

Data Acquisition and Storage

88 / 128 H166633_15_015

 ...

Table 10.5: Receiver phase setting without and with recph

receiver phase should be specified before the scan loop using the statement recph ph31
(see the table above). The statement ip31 after the recycle loop increments all entries of the
phase program ph31 but does not set the phase. As such, the receiver phase is not changed
after each scan but after NS scans.

10.1.7 External Dwell Pulses

The go and adc statements instruct the digitizer to acquire the desired number of data points
with a rate given by the dwell time. The dwell pulse (only a short dwell pulse is necessary to
acquire a complete scan) is generated by the TRX which is dedicated to the observe channel.
This is the meaning of the macro DWELL_GEN which evaluates to the statement:
aq cpdngs17:f1

Certain experiments, however, require the control of the detection of each individual data
point of an FID. In this pulse program the waiting time aq has been replaced by a loop that
collects as many dwell points as required to measure TD data points.
On AV III systems, the pulse program instructions DWL_CLK_ON/DWL_CLK_OFF have been
used to gate an acquisition, but those commands will not compile anymore on systems newer
than AV III, and for technical reasons had to be replaced by three new pulse program
instructions. Furthermore, the pulse program statement ‘dwellmode explicit’ is now obsolete
and ignored by the compiler.
The new pulse program instructions are:
START_NEXT_SCAN

DWELL_HOLD

DWELL_RELEASE

The usage is in a way similar to DWL_CLK_ON/DWL_CLK_OFF, but some details are different:
1. START_NEXT_SCAN:

This command is mandatory. It instructs the digital part of the receiver to start to acquire
TD data points (this behavior is similar to DWL_CLK_ON). Acquisition will start immediately
after this command (if no DWELL_HOLD was set before). It will automatically finish if TD
points have been acquired. If, however, TD points have not yet been collected and
another START_NEXT_SCAN command is executed the acquisition will abort with an error
message.

2. DWELL_HOLD: This command is optional. It instructs the digital part of the receiver to stop
acquiring data points until the next DWELL_RELEASE command.

3. DWELL_RELEASE:
This command is optional. It instructs the digital part of the receiver to continue acquiring
data points until TD points have been acquired. Requires a preliminary
START_NEXT_SCAN to take effect.

Please also refer to the Bruker pulse program libraries for high resolution, solids, and imaging
experiments for examples using these commands.
The digitizer itself has a constant rate of 240 MHz and cannot be stopped and started,
instead it can be gated and the resulting data stream is filtered and decimated according to
the chosen sweep width and decimation.
By using the DWELL_ENABLE/DWELL_RELEASE commands it is possible to pause the
acquisition (on the digital side of the ADC) and for example apply another pulse sequence
before continuing to acquire the FID.
In this way data points are acquired explicitly but both decimation and digital filters are
nevertheless used for the acquisition.

Data Acquisition and Storage

H166633_15_015 89 / 128

In case less than TD points have been acquired when setting up the next scan, an error is
reported.
The following is a draft of an example pulse program with an explicit dwell mode generation.
Please note that, in case Avancesolids.incl is used instead of Avance.incl, the
macros RG_ON/RG_OFF have to be used instead of REC_UNBLANK/REC_BLANK.

#include <Avance.incl>

#include <De.incl>

define loopcounter tdh

define loopcounter firstFidSegment

define loopcounter secondFidSegment

; loop over TD/2 because with each dwell clock two points are acquired
; d12 is the dwell time for one complex data point (i.e. two data points of TD)
"tdh=td/2"

"firstFidSegment = tdh/2" ; just for clarification
"secondFidSegment = tdh/2" ; just for clarification
ze

; now excite spin system, this section is omitted here
ACQ_START1(ph30, ph31) ; now start acquisition
(1u REC_UNBLK):f1 ; unblank (analog part of) receiver
1u DWELL_HOLD ; prevent data acquisition
1u START_NEXT_SCAN ; tell (digital part of) receiver to acquire a total of TD points
; turn dwell clock on to acquire two data points.
; Note that d12 must be long enough

lo to 4 times firstFidSegment ; now repeat to acquire the next
 two data points
1u REC_BLK ; blank receiver path
4 d12 DWELL_RELEASE ; now start acquiring points
0.1u DWELL_HOLD ; now stop acquiring points
; now the first half of the FID has been acquired
; do something else here, e.g. apply some pulses
; now the second half of the FID is acquired:

(1u REC_UNBLK):f1 ; unblank (analog part of) receiver
5 d12 DWELL_RELEASE ; now start acquiring points
0.1u DWELL_HOLD ; now stop acquiring points
lo to 5 times secondFidSegment

1u DWELL_RELEASE ; see explanation below for this command
1u REC_BLK ; blank receiver path
100u eoscnp ; end of scan
 ; OK, FID has been acquired

Data Acquisition and Storage

90 / 128 H166633_15_015

10m wr #0 ; write fid down to disk
exit

ph1=0

ph30=0

ph31=0

Please note the somewhat surprising DWELL_RELEASE command at the end of the
acquisition sequence. This is necessary because although up to this point in the pulse
program all of the TD points have been acquired there may still be some few points in the
filter pipeline of the TRX (especially if the acquisition time is exactly calculated, e.g. as d12 in
the example above). Those points also have to be flushed out, which is done by the final
DWELL_RELEASE command.
There is one potential drawback when using explicit dwell mode generation: The digital filter
is not cleared between the FID segments.
The consequence in the example above is that – when starting to acquire the second half of
the FID - there are still the last GRPDLY (group delay) points of the first FID segment in the
filter pipeline which will now affect the first points of the second half of the FID. This does not
matter if e.g. the subsequent chunks of data seamlessly fit together concerning the
development of the chemical shift, but it has to be kept in mind that there is a potential source
of error depending on the current experiment.
The group delay is available in the pulseprogram as compile-time variable grpdly.
It is defined as number of complex points, i.e. a group delay of 78 means that the first 156
points of the FID are affected by the length of the filter pipeline.

10.2 Acquisition Memory Buffers
The acquisition statements go=label, gonp=label, and adc put the acquired data points
into a memory buffer where they reside until new data points are added, or until they are
replaced by new data (replace mode is turned on by the statements ze and zd). A memory
buffer provides space for TD data points, where TD must be set by the user.
In most 1D experiments, one FID is measured and stored in one memory buffer. After NS
scans have been accumulated, the contents of that memory is written to disk (with the wr
statement). Multi-dimensional experiments, imaging experiments, experiments varying
parameters such as the decoupling frequency or recovery time generate several FID’s. In that
case you can use one or several memory buffers. If a single buffer is used, the buffer
contents must be transferred to disk before the next FID can be measured. If several buffers
are used, several FID’s can be measured before a disk transfer is required. The latter method
is appropriate if the FID’s of the experiment succeed one another so quickly that no disk
transfer is possible in between them.
The acquisition parameter NBL determines the number of memory buffers used (default:
NBL=1). Each buffer has a size TD. If TD is not a multiple of 128, the buffer size will be
rounded to the next multiple of 128 data points. The acquisition commands will put the FID
into the current buffer. The default current buffer is buffer 1. The pulse program statement st
makes the next buffer the current buffer whereas the statement st0 makes the first buffer the
current buffer. When the number of buffers is exhausted, i.e. when st is executed for the
NBL’th time, the first buffer becomes the current buffer.
The statements st and st0 must be specified behind a delay which must be at least 10
μsec, e.g.:

 10u st
1 ze
 d11 pl14:f2
 d11 fq2:f2 st0

Data Acquisition and Storage

H166633_15_015 91 / 128

2 d1
3 d20 cw:f2
 d13 do:f2
 p1 ph1
 go=2 ph31
 d1 fq2:f2 st
 lo to 3 times l4
 d11 wr #0 if #0
exit

Table 10.6: Usage of st and st0: noediff pulse program

The table above shows an example, the Bruker pulse program noediff. The FID’s acquired
with different decoupling frequencies are stored in two memory buffers.
The commands ze and zd reset the scan counters for all NBL buffers. Of course, the pulse
program must do NS (NS+DS) scans in each buffer before advancing to the next buffer with
the command st. If dummy scans should be done only before acquisition starts in the first
block, it is better to write a separate loop before the actual acquisition loop in the pulse
program.

10.3 Writing Data to Disk
Data acquisition statements go=label, gonp=label, gosc, goscnp, and adc put the
digitized data into a memory buffer, but do not store them to disk. Therefore, every pulse
program must contain at least one disk write statement to transfer the acquired data to disk.

mc #0 Macro statement that executes the statements
wr #0, if and zd. Normally mc is specified with one or
more clauses which expand to loop structures. See
chapter The mc Macro Statement [} 95].

wr #0 Transfer the acquisition buffer to the file fid, or transfer
NBL acquisition buffers to the file ser of the current data
set. For ser files: wr starts writing into the file at the
current position of the disk file pointer, which initially is
at the beginning of the file.

wr #1, wr #2, wr #3, ... Transfer is performed to the file fid or ser of the data set
with the number 1, 2, 3, ... contained in the data set list
defined by the acquisition parameter MULEXPNO.

wr ## Transfer is performed to the file fid or ser of the data set
which is pointed to by the dataset list pointer. Its initial
position is #0 which always corresponds to the
foreground dataset. The dataset list pointer itself can be
manipulated with the commands ifp, rfp and dfp.

if #0, if #1, if #2, ... Advance the disk file pointer for ser files by TD*NBL
(note that TD is rounded to the next multiple of 256 data
points if it is not a multiple of 256).

if ## Advance file pointer of current file (see wr ##)

df #0, df #1, df #2, ... Decrement the file pointer (inverse of if).

rf #0, rf #1, rf #2, ... Reset the file pointer to the beginning of the ser file.

rf #0 m, rf #1 m, rf #2
m, ...

Set the file pointer to position m*TD*NBL of the ser file,
where m is an integer number.

Data Acquisition and Storage

92 / 128 H166633_15_015

ifp The dataset list pointer ## is incremented by 1. It
initially points to the foreground dataset (#0), after the
first increment to the first item of the dataset list (#1)
and so on (NB: There is an automatic wrap-around, i.e.
the list pointer jumps back to the foreground dataset
when it points to the last data set list item and is further
incremented).

dfp The dataset list pointer ## is decremented by 1.
(NB: There is an automatic wrap-around, i.e. the list
pointer jumps to the last item of the dataset list when it
points to the foreground dataset and is further
decremented).

rfp The dataset list pointer ## is reset to the first item (the
foreground data set #0).

Table 10.7: Writing acquisition buffers to disk

The table above shows the available pulse program statements to access disk files.
Transferring data to disk means adding the data to the data contained in an existing fid or ser
file, or replacing these data. If no such file exists, it will be created. Replacement will take
place if started with zg, addition will take place if the pulse program is started with the
command go. However, data replacement only occurs the first time a memory buffer is
transferred to disk. Any further execution of the mc or wr statement will cause the buffered
data to be added to the data in the file.
Nevertheless, for certain experiments it may be desirable to replace (instead of accumulating)
the stored FID any time a wr command is executed. This can be achieved by writing the
statement

wrmode replace

at the beginning of the pulse program, i.e. above the first ze statement usually marking the
beginning of the acquisition loop.
It is allowed to specify the statements if, zd, id0-id63, ip0-ip31, and decoupling
statements behind the same delay which is used for wr.
For example, one could write
30m wr #0 if #0 zd

in one line of the pulse program(df or rf instead of if are also possible).
Please note that it is important to use either a zd or ze statement after each wr before the
next scan. Otherwise the receiver will not clear its local data buffer, and as a consequence
the same data will be accumulated again with the next wr command.
In rare cases or very complicated experiments, it may also be necessary to increase the file
pointer more than once after a wr statement. This is also possible by writing for example
30m wr #0

1u if #0

1u if #0

The name of the output file is fid or ser. A fid file contains a single FID, whereas a ser file
contains a series of FIDs. The appropriate name is automatically chosen by the pulse
program compiler: if a pulse program contains one of the increment, decrement, or reset file
pointer statements, or st/st0, a ser file will be created.

Data Acquisition and Storage

H166633_15_015 93 / 128

If the pulse program uses a ser file, the acquisition command checks if a ser file already
exists and if it has the correct size. If this is the case, the first occurrence of a wr statement
will overwrite the ser file section defined by the current file pointer, TD, and NBL. If a ser file
does not exist or has the wrong size, a new ser file will be created and filled with zeroes
before acquisition starts. As such, the ser file is not required to grow during the experiment.
This method avoids the risk of running out of disk space while acquisition is in progress.
In a 2D experiment, the TD value must be set such that TDF1*TDF2*4 corresponds to the size
(in bytes) of the ser file. In a 3D experiment, the TD values must be set such that
TDF1*TDF2*TDF3*4 corresponds to the size (in bytes) of the ser file. If they are not, a warning is
displayed even though the experiment can still be executed. If, for some reason, you have
performed a 2D experiment with TD values that do not match the size of the ser file, you must
set the status TDF1 value before you process the data. You can do that with 1s td. For 3D
experiments you can adjust the TD values of the indirect dimension with 2s td and 1s td.
These rules apply to acquisition dimensions higher than 3 in a similar way. TopSpin allows
acquisition dimensions up to 8D.
In 3D pulse programs, the acquisition status parameter AQSEQ describes the order (321 or
312) in which the 1D FID’s of a 3D acquisition are written into the ser file (3 = the acquisition
dimension, 1 and 2 = the orthogonal dimensions). AQSEQ is automatically set and stored in
the parameter file acqus according to the pulse program loop structure. A 3D pulse program
usually contains a double nested loop with loop counters td1 and td2. If td1 is used in the
inner loop and td2 in the outer loop, AQSEQ is set to 312. Otherwise it is set to 321. Note
that, in most 3D pulse programs, the td1 and td2 loop is implicitly defined by an mc
statement. If a 3D pulse program contains a different loop structure (not defined by td1,
t2d, or mc) AQSEQ should be explicitly set with one of the statements:
aqseq 321

aqseq 312
before the actual pulse sequence. Without this statement, the status parameter AQSEQ
would be set to an arbitrary value. In that case you can still set it after the acquisition has
finished (before processing) with the command 3s aqseq. In dimensions higher than 3D only
the natural order (e.g. 4321) is supported and there is no corresponding aqsec command.
The wr statements and all other statements in the table Writing acquisition buffers to disk
[} 91] can be specified behind a delay. See also the example in table Usage of st and st0:
noediff pulse program [} 90]. The only timing requirement for wr is that the disk transfer is
finished before wr is called again. If it is not, a run-time error message is printed. The actual
execution time of a disk write depends on the computer hardware, the operating system, and
the system load according to currently active processes and users. Bruker recommends
acquiring data only to a disk that is physically connected to the computer that controls the
spectrometer.
However, there is another limit if wr is used in conjunction with other commands for data
handling. The commands wr, if (or df or rf, respectively) and zd may be combined on a
single line. Other commands, like ze must be on a separate line. Any sequence containing
one of these commands more than once must have a delay of 10 ms between two of them.

Data Acquisition and Storage

94 / 128 H166633_15_015

The mc Macro Statement

H166633_15_015 95 / 128

11 The mc Macro Statement

11.1 The mc Macro Statement in 2D
A 1D experiment can be based on the following pulse program sequence:
1 ze ; initialization
2 d1 ; starting delay
 p1 ; pulsing
 d0 ; waiting
 go=1 ; acquiring FID and loop for adding
 d1 wr #0 ; write to buffer

You can turn this sequence into a 2D sequence by taking the following steps:
• Increment the file pointer after each disk write
• Initialize the buffer after each disk write
• Increment a delay, by convention d0, in each loop
• Add a loop outside of the wr #0 statement to a second label - the size of which is usually
td1

• For phase sensitive acquisition: add a phase increment
When the indirect dimension is acquired phase insensitive, the 2D pulse program would have
the following form:
1 ze
2 d1
3 p1
 d0
 go=2
 d1 wr #0 if #0 zd id0
 lo to 3 times td1

The last two lines can be replaced by the mc statement. In the above sequence, this would
take the form:
d1 mc #0 to 2 F1QF(id0)

The statement mc is a macro that includes a disk write (wr), a file increment (if) and
memory initialization (zd). It can be used with one or more clauses, e.g. F1QF, which
expands to a loop structure. Each clause can take one or more pulse program statements,
e.g. id0, as arguments. These statements are executed within the loop created by the
clause. Different mc clauses are used for phase sensitive, phase insensitive and echo-
antiecho experiments. However, the same mc clause, i.e. the same pulse program, can be
used for different types of phase sensitive experiments like QSEQ, States, TPPI and States-
TPPI. The experiment type is determined by the F1 acquisition parameter FnMODE. The
allowed combinations of FnMODE and mc clauses are listed in the next table.

mc clause Mode Possible values of FnMODE[F1]

F1QF phase insensitive QF

F1PH phase sensitive QSEQ, States, TPPI, States-TPPI

F1EA Echo-Antiecho Echo-Antiecho

Table 11.1: Allowed combinations of FnMODE and mc clauses

If an incorrect combination of FnMODE and mc clause is used, such as F1PH - QF, the zg
command will show an error message and quit.

The mc Macro Statement

96 / 128 H166633_15_015

2D and 3D processing commands interpret the acquisition status parameter FnMODE and
set the processing status parameter MC2 accordingly. However, if FnMODE = undefined,
they interpret the processing parameter MC2 and set the processing status parameter
MC2 accordingly.
By using mc instead of the wr and lo to label statements the same 2D (and 3D) pulse
programs can be used for TPPI, States-TPPI and States, respectively. We will look at the
expanded forms of cosyph for different values of FnMODE[F1]. The unexpanded pulse
program as it appears with edpul cosyph:
"d0=3u"

1 ze
2 d1
3 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 d1 mc #0 to 2 F1PH(ip1, id0)
 exit

ph1 =0 2 2 0 1 3 3 1
ph2 =0 2 0 2 1 3 1 3
ph31=0 2 2 0 1 3 3 1

The mc command will put into the expanded pulse programs the following header which is the
same for the different values of FnMODE[F1]:
define delay MCWRK
define delay MCREST
"MCREST = d1 - d1"

As such, it is not specified in the expanded pulse programs below.
Note that MCWRK, MCREST are general delays that are defined during the expansion of the
mc statement.
MCREST is zero for all expansions of cosyph but can be non- zero for other pulse
programs.
MCWRK, however, is different for different expansions.
Note that the phase programs are, for each value of FnMODE, the same as in the
unexpanded pulse program.

FnMODE[F1] = QSEQ:
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"

1 ze
 "in0 = in0 / 2"
2 MCWRK
 LBLSTS1, MCWRK
 LBLF1, MCREST
3 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 MCWRK wr #0 if #0 zd ip1 id0
 lo to LBLSTS1 times 2
 MCWRK rp1
 lo to LBLF1 times ST1CNT
exit

The mc Macro Statement

H166633_15_015 97 / 128

FnMODE[F1] = States
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"
1 ze
2 MCWRK
 LBLSTS1, MCWRK
 LBLF1, MCREST
3 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 MCWRK wr #0 if #0 zd ip1
 lo to LBLSTS1 times 2
 MCWRK rp1 id0
 lo to LBLF1 times ST1CNT
exit

FnMODE[F1] = TPPI
"MCWRK = d1"
1 ze
 "in0 = in0 / 2"
2 MCWRK
 LBLF1, MCREST
3 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 MCWRK wr #0 if #0 zd ip1 id0
 lo to LBLF1 times td1
exit

FnMODE[F1] = States-TPPI
define loopcounter ST1CNT
"ST1CNT = td1 / (2) "
"MCWRK = 0.500000 * d1"
1 ze
2 MCWRK
 LBLSTS1, MCWRK
 LBLF1, MCREST
3 p1 ph1
 d0
 p0 ph2
 go=2 ph31
 MCWRK wr #0 if #0 zd ip1
 lo to LBLSTS1 times 2
 MCWRK id0
 lo to LBLF1 times ST1CNT
exit

The expanded version of the pulse program can be found in the expno directory of the
dataset in the file pulseprogram. Note that the mc statement performs the following actions:

• In QSEQ, States, States-TPPI and Echo-Antiecho mode, mc creates two loops and sets
the corresponding labels and delays. The delay at the line to which mc loops back to is
split into two equal parts: one for the inner loop label and one for the outer loop label.

The mc Macro Statement

98 / 128 H166633_15_015

• For FnMODE[F1] = QSEQ or TPPI, the value for the delay increment is divided by 2
during run time. In older program versions, the parameter ND0 represented the number
of occurrences of d0 within the loop. In TopSpin 2.1 and later versions, this parameter is
no longer used. It is replaced by an equation which determines the dwell time for this
dimension. Both of them are independent from FnMODE.

• For FnMODE[F1] = QSEQ or States, an rp1 statement is included within the outer loop.
This causes the phases of ph1 to be reset to their original values.

• For FnMODE[F1] = States, States-TPPI and Echo-Antiecho, the statements specified in
the first argument of the mc clause are executed in the inner loop and the statements
specified in the second argument are executed in the outer loop.

• For FnMODE = QSEQ, the statements specified in the first and second argument of the
mc clause are executed in the inner loop.

• For FnMODE = TPPI, only one loop is created so the statements specified in the first and
second argument of the mc clause are executed in that loop.

• For FnMODE = QF, the mc clause contains only one argument whose statements are
executed in the only loop that is created.

For large 2D data sets, it is often useful to test the experiment with the first increment. This
can be done by setting the parameter TD[F1] to 1. The dimension of the generated dataset
will be 1D and can be processed as such. Note that you do not have to change the value of
the parameter PARMODE; it is still set to 2D. In the same way, you can acquire a plane of a
3D dataset by setting TD[F1] or TD[F2] to 1, and a single row by setting TD[F1] and TD[F2] to
1.

11.2 The mc Macro Statement in n-Dimensional Experiments
The mc statement can also be used in nD pulse programs. In this case, there are n-1 indirect
dimensions, F1 to Fn-1. For the F1 dimension, mc uses the clauses F1PH, F1EA and F1QF,
for the F2 dimension, it uses the clauses F2PH, F2EA and F2QF and so on.
The F2PH clause creates a second loop within which a second delay is varied.
The pulse program noesyhmqcpr3d:
aqseq 312

1 d11 ze
2 d11 do:f2
3 d12 pl9:f1 pl2:f2
...
 go=2 ph31 cpd2:f2
 d11 do:f2 mc #0 to 2
 F1PH(ip1 & ip29, id0)
 F2PH(rd0 & ip5, id10)
 exit

with
FnMODE[F2] = States-TPPI
FnMODE[F1] = States-TPPI:
expands to :
aqseq 312

define delay MCWRK
define delay MCREST
define loopcounter ST2CNT
"ST2CNT = td2 / (2) "
define loopcounter ST1CNT

The mc Macro Statement

H166633_15_015 99 / 128

"ST1CNT = td1 / (2) "
"MCWRK = 0.166667 * d11"
"MCREST = d11 - d11"
1 d11 ze
2 MCWRK*2 do:f2
 LBLSTS2, MCWRK
 LBLF2, MCWRK*2
 LBLSTS1, MCWRK
 LBLF1, MCREST
3 d12 pl9:f1 pl2:f2
 ...
 go=2 ph31 cpd2:f2
 MCWRK do:f2 wr #0 if #0 zd ip1
 MCWRK ip29
 lo to LBLSTS2 times 2
 MCWRK id0
 lo to LBLF2 times ST1CNT
 MCWRK rd0
 MCWRK ip5
 lo to LBLSTS1 times 2
 MCWRK id10
 lo to LBLF1 times ST2CNT
 exit

If you reverse the acquisition order of this pulse program, i.e. if you specify:
aqseq 321

you have to change the mc clauses to:
F1PH(rd10& ip1 & ip29, id0)
F2PH(ip5, id10)

For dimensions higher than 3 only the natural order is supported which is for example in 4D
4-3-2-1.

11.3 Additional mc Clauses
Apart from the mc clauses specified above two further clauses are available:

• F1I

• this clause is typically used for interleaved experiments where parameters have to be
varied independently from the ip/id scheme required for the actual 2D.

• F0

• this clause is used when a parameter needs to be varied without incrementing the data
file pointer.

Both F1I and F0 expand to an additional inner loop.
As an example of the F1I clause, we will take the pulse program noesygpphprxf; with
FnMODE[F1] = States-TPPI:
1 ze
 d11 pl12:f2
2 d11 do:f2
3 d12 pl9:f1
 ...
 go=2 ph31 cpd2:f2
 d11 do:f2 mc #0 to 2
 F1I(ip3*2, 2, ip13*2, 2)
 F1PH(ip4 & ip5 & ip29, id0)
 exit

The mc Macro Statement

100 / 128 H166633_15_015

will expand to
"ST1CNT = td1 / (2 * 2 * 2) "
"MCWRK = 0.166667 * d11"
"MCREST = d11 - d11"
1 ze
 d11 pl12:f2
2 MCWRK do:f2
 LBLF1I1, MCWRK
 LBLF1I2, MCWRK*3
 LBLSTS1, MCWRK
 LBLF1, MCREST
3 d12 pl9:f1
...
 go=2 ph31 cpd2:f2
 MCWRK do:f2 wr #0 if #0 zd ip3*2
 lo to LBLF1I1 times 2
 MCWRK ip13*2
 lo to LBLF1I2 times 2
 MCWRK ip4 MCWRK ip5 MCWRK ip29
 lo to LBLSTS1 times 2
 MCWRK id0
 lo to LBLF1 times ST1CNT
 exit

The pulse program line below shows how the F0 clause can be used:
d1 mc #0 to 1 F0(id9) F1QF(id0)

will be expanded to:
...
d1*0.5 id9
lo to 2 times td0
d1*0.5 wr #0 if #0 zd id0
...

As a loop counter, the parameter TD0 is evaluated.
In order to be able to switch dimensions, timing of statements within the loops must be
controlled by the mc statement. So delays or pulses should not be used as argument to the
F0, F1PH ... clauses of the mc statement. But in some cases statements must be separated
by an delay. Precautions have been taken for this case: the & symbol used within an
argument of F0, ... will be substituted by an equal fraction of the delay with which the mc
statement was specified, e.g.
d1 mc #0 to 1 F0(ip1 & ip3)

will expand to
MCWRK ip1 MCWRK ip3
lo to 3 times td0

For 3D pulse programs, the clauses F1I and F2I are available for the two indirect
dimensions.

11.4 General Syntax of mc
The syntax for the mc statement is
label <delay1> <options>
...
...
<delay2> <options> mc #<buffer> to <label>
F0(<statements>)

The mc Macro Statement

H166633_15_015 101 / 128

F1I(<sts>,<no. of loops>,<sts>,<no. of loops>, ...)
F1PH(<statements>,<statements>)
F1QF(<statements>)
F1EA(<statements>,<statements>)
F2I(<sts>,<no. of loops>,<sts>,<no. of loops>, ...)
F2PH(<statements>,<statements>)
F2QF(<statements>)
F2EA(<statements>,<statements>)

The following rules hold:
• <label> must be followed by one delay and can be followed by options.
• <delay1> must be greater than or equal to <delay2>.
• multiple clauses like F0(), F1PH(), … can be specified on the same line or on

consecutive lines. Do not specify any other statements between the clauses.
• The order in which F0(), F1PH(), ... clauses occur is irrelevant.
• In 3D, the statement aqseq 312 determines the order of the F1 and F2 loop.
• The pulse program must contain a ze statement after the parameter definitions.
• The symbol & is required between multiple statements of the same type (e.g. multiple

phase increments) that are specified within one argument.
After expansion, each statement will appear with a separate delay (see the example in
section Additional mc Clauses [} 99]). Multiple statements of a different type (e.g. a phase
increment and a delay increment) can be specified with a & symbol or with a white space in
between. In the latter case, after expansion, they will appear together behind one delay.
The next table shows, which expansions will be done (X) for different values of
FnMODE.

FnMODE create a
double loop

delay-
increment
div. by 2

phase reset phase inc
inserted

delay inc in
inner loop

QF X

QSEQ X X X X X

TPPI X X X

States X X X

States-
TPPI

X X

EA X X
Table 11.2: Results of use of different FnMODEs

Note the following when you look at the expanded pulse program:
• MCWRK is a fraction of <delay2> and is calculated according to the number of

arguments of the mc clauses.
• MCREST is the difference between <delay1> and <delay2>.
• The generated labels have names like LBLF*. Please do not use labels with these names

in your own user-defined pulse programs.
• A line starting with a # is a comment to the statement(s) that follow it.

The comment contains the respective line number in the original pulse program, and, if
applicable, the expansions that were made.

The mc Macro Statement

102 / 128 H166633_15_015

11.5 Advanced nD Sampling Techniques

11.5.1 The Parameter FnTYPE

While in traditional nD acquisition each plane is measured completely before the next plane
begins, there are new techniques where planes are not measured completely and in various
orders. The new techniques are described by the parameter FnTYPE where
FnTYPE="traditional" stands for the conventional technique.
FnTYPE="full(points)" stands for a technique where all 2n-1 FIDs belonging to a complex point
of an nD acquisition are measured together.
FnTYPE="non uniform sampling" is a technique where the complex points which are
measured are described by a list of coordinates. Each complex point (FID) of an nD
experiment is described by n-1 coordinates. These coordinates have to be put in a variable
loopcounter list in the order Fn-1, Fn-2, ..., F1. The number of FIDs measured is determined
by the length of the list divided by (dimension - 1). The name of the list must be set with the
parameter NUSLIST. The non-uniform sampling technique reduces the number of points
measured and in this way the total experiment time.
FnTYPE="projection spectroscopy" will eventually result in 2D projections of a nD experiment
onto the Fn-1 dimension. For this the increments are scaled according to the projection
angles specified in eda (ProjAngle) via sin/cos functions. For each point in time a
hypercomplex datapoint is acquired and all delays are incremented at the same time. The
data need to be split into different 2D projections (for + and - alpha (3D), +alpha/+beta,
+alpha/-beta, -alpha/+beta, -alpha/-beta (4D) etc.) prior to Fourier Transformation.
Each FnTYPE requires a different kind of processing. The new mc syntax is compatible with
all FnTYPEs and no modification in the pulse program is necessary if different FnTYPEs are
used. The processing software can detect the order in which data are stored on disk from the
status parameter FnTYPE.

11.5.2 Parameter Calculation from Complex Point Indices

For all these kinds of acquisition the conventional form of the mc command is no longer
sufficient. Instead, the increments of the incremental delays and the phase programs must be
calculated from the indices of the complex point in each dimension. For this purpose 6 new
commands are available which can be used to calculate these increments:

calph(phX, increment) calculates the phase program increment
and increments the phase program.

caldel(dX, increment) calculates the delay which is necessary
for a set of indices.

calgrad(list, increment) calculates and sets the list position of a
gradient list.

calclc(lX, increment) calculates the loop counter lX for a set of
indices.

calclist(listX, increment) calculates and sets a list pointer for the
listX.

calphptr(phX, increment) calculates and sets the pointer in phase
program phX.

Table 11.3: Parameter calculation from complex point indices

An example from a 3D pulse program illustrates this:
Conventional pulse program:
F1PH(ip5, id0)

The mc Macro Statement

H166633_15_015 103 / 128

F2PH(igrad EA & rd0 & rp5 & ip7 & ip9, dd10 & id20 & id30)

Using the new syntax the same is expressed as
F1PH(calph(ph5), caldel(d0))
F2PH(calgrad(EA) & calph(ph7) & calph(ph9) & caldel(d10, -in10) &
caldel(d20) & caldel(d30))

One can see that the new form of the command needs less arguments than the conventional
one since it is no longer necessary to reset delays and phase programs.
The second argument of the cal... commands describes the increment, for calph it is
the increment of the phase program in degrees, for caldel it is the increment of the delay in
sec. The argument can be omitted, in this case it defaults to 90o for phases and for delays to
the IN parameter of the delay specified in the first argument (IN0 for d0 etc.). For the
calgrad command the first argument is the name of the list, second (optional) argument is a
multiplier for the increment (+1 per default, -1 corresponds to the dgrad command). For
calclc the first argument is the name of the loopcounter and the second the increment (+1
per default, -1 corresponds to the du command). calclist calculates a list pointer. If the
calculation results in a pointer outside the list, a modulo calculation is done to keep the result
within the list. The same is true for calgrad and calphptr.
If a cal... statement appears before the comma, the variable which underlies the
calculation is the variable of the inner loop, i. e. the phase loop. Statements after the comma
refer to the outer loop, i. e. td loop. If there is no comma, because the statement has no inner
loop, the result will refer to the outer loop. If the same statements appear before and after the
comma, the results of both calculations are added, for example
F1PH(calph(ph5), calph(ph5))

will result in a phase ph5 which varies in the inner and in the outer loop. If however the same
statement appears in different dimensions, the second calculation overwrites the result of the
first calculation.
F1PH(calph(ph5), ...) ; useless, result will be overwritten
 by the next line
F2PH(calph(ph5), ...)

In such a case different phase programs have to be used for different dimensions in
conjunction with pulses where the phase programs are added:
p5:f1 ph5+ph6
...
F2PH(calph(ph5), ...)
F1PH(calph(ph6), ...)

11.5.3 Old and New Syntax

If the new syntax is used, all other commands within the mc clauses are forbidden. There are
two exceptions:

• The inner loops FnI must contain only conventional commands.
• If a conventional command must be used in conjunction with the new syntax, one can put

it into an exec statement in order to switch off the syntax check, for example:
 F1PH(...., exec(fxlist.inc))

The mc Macro Statement

104 / 128 H166633_15_015

Subroutines

H166633_15_015 105 / 128

12 Subroutines

12.1 Definition
Like in most programming languages, also in pulse programs certain parts of a program can
be implemented within more or less generally applicable subroutines - for example if a certain
set of instructions has to be executed several times. A subroutine definition can be in the
header of a pulse program or in an include file. It consists of the keyword subroutine and the
subroutine name followed by the argument list in parentheses and by the subroutine body in
curly braces:
subroutine SR1(<arguments>)
{
 <subroutine body>
}

It is important to emphasize at this point that, in contrast to other programming languages, a
call of a subroutine leads to a place holder which later gets replaced by the actual instructions
defined in the subroutine. This has the important consequence that it is not possible to
declare local variables within a subroutine. Furthermore, there exists no concept like a return
value for a subroutine. A class name may optionally be appended to the subroutine name.
This serves to identify the subroutine and to prevent it from illegal usage:
subroutine SR1:CLASS1(...)

These classes are dedicated to improving the code structure in large pulse programs with
many subroutines. The class concept is only maintained within a certain pulse program (and
its include files), i.e. it does not provide limitations towards the usage of a subroutine to a
special subset of pulse programs.
The allowed argument types in the definition of a subroutine are restricted to the following
set:
pulse, delay, loopcounter, phase, gradient, any.

Hereby any allows to use arguments of a type not explicitly contained in the above set (e.g. a
channel) but then, in contrast to the explicit types, no type check is performed.
A simple example for the definition of a subroutine is given below:
subroutine SR1:CLASS1(delay dla, pulse pls, any chn)

{

 dla pls:chn ;delay and a pulse on a channel in a subroutine

}

Subroutine calls within subroutines are possible. In contrast to the introductory remarks about
the absence of local variables, labels in subroutines are local to this subroutine and may be
used by loops within the same subroutine.

12.2 Subroutine Execution
A subroutine is called with the keyword subr. For the small example subroutine from above
this is shown below:
subr SR1:CLASS1(d1, p1, f1)

This call defines a place holder which during pulse program compilation will be replaced by
the following code:
d1 p1:f1

Subroutines

106 / 128 H166633_15_015

For this example the call subr SR1:CLASS1(ph1, p1, f1) would lead to a compilation
error, because the type phase of the first argument in the call is not identical to the type
delay of the first argument in the definition of the subroutine. On the other hand, the call
subr SR1:CLASS1(d1, p1, sp1:f1) would not lead to an error (if the shape sp1 is
known) because the type of the last argument in the subroutine definition is any and the
instruction p1:sp1:f1 is valid syntax - even though it might not do what it originally was
intended to.
If subroutines are defined with a class specification, it is mandatory that the same
specification is added to the call of the subroutine. If labels are specified, the pulse program
compiler changes them into unique names to avoid multiple definitions.

12.2.1 Subroutines with Variable Names

Different subroutines can be called from a pulse program without changing the pulse program
itself by using the parameters SUBNAM1-16:
subr <$SUBNAM1>(d1, p1, f1)

The compiler will insert the subroutine whose name is in SUBNAM1 at this place.
The precompiled pulse program pulseprogram in the raw data directory always shows the
expanded subroutine together with lines which mark its begin and end.

12.2.2 Subroutines with Variable Names and Classes

It is allowed that subroutine definitions can have the same name within different classes. For
instance, the class tocsydef defines subroutines which are necessary in the definition
phase, and the class tocsy subroutines in the execution phase of the program. Both
subroutines can then be called with the same name SUBNAM1. In this case it is necessary
that for each member of class tocsy there exists a corresponding member of class
tocsydef and vice versa.

Miscellaneous

H166633_15_015 107 / 128

13 Miscellaneous

13.1 Multiple Receivers
For multi-receiver experiments, you can specify in the pulse program which receivers you
want to use to acquire the data. The logical receiver number (1-8) can be appended to the
following statements:
go, gonp, gosc, goscnp, adc, rcyc, rcycnp, eosc, eoscnp, ze, zd, st, st0, aq, dw,
dwov, recph, wr, if, acqt0_F
For example the statement
go5=label

acquires the data with the receiver which is connected to the logical channel F5.
If no number is specified, 1 is assumed, i.e. go is equivalent to go1.
Parameters for the first transceiver are taken from the current dataset. Parameters for the nth

transceiver are taken from data set n. The EXPNO of this dataset is defined in the acquisition
parameter MULEXPNO[n].
The following parameters are taken from the dataset defined by MULEXPNO:
AQ_mod, DECIM, DIGMOD, DIGTYP, DQDMODE, DR, DSPFIRM, DSPFVS, FTLPGN, NBL,
OVERFLW, SEOUT, SFO1, SW, TD.
All other parameters are taken from the current dataset.
The command wr <m> #<n> then writes out the data of this m-th receiver channel to the
dataset n (defined via MULEXPNO[n]). To avoid conflicts one should use for m and n
numbers with m=n+1 in the same command.
The routing of the receivers can be inspected and changed within edasp. If you click show
receive routing then you can see from right to left the logical receive channels with their
respective nuclei and transceivers. The acquisition parameters RECCHAN, RECSEL and
RECPRE describe these connections.

13.2 Real Time Outputs
The spectrometer TCU provides a number of real time outputs which are used to control
various spectrometer components, such as gating and blanking the transmitters. Please refer
to your hardware documentation to find out which output is connected to a particular device.
The pulse program compiler will select the correct output automatically, e.g. for a statement
like p1:f2.
The file $xwinnmrhome/exp/stan/nmr/lists/pp/Avance.incl contains a number of macro
definitions based on the outputs, which can be used in pulse programs. This file can be
viewed with the command edpul Avance.incl. Depending upon the spectrometer type this
file can have different contents after expinstall.
The hardware documentation will also inform you which of the outputs are free for special
purposes, e.g. for controlling a laser from a pulse program.

13.2.1 Type 1 Outputs (“NMR control words“)

On AV systems, there are 3 outputs called RCP32, RCP33, and RCP34 in NMR0 and 32
outputs in NMR3 and 4, respectively. They can be enabled or disabled from the pulse
program in a way illustrated by the examples below.
1u setnmr0 | 32 ; set gradient blanking for z gradient

Miscellaneous

108 / 128 H166633_15_015

activates output channel 15 (using active=low logic). The channel remains active until it is
explicitly deactivated, e.g. with the statement:
1u setnmr0 ^ 32

The characters “|“ (vertical bar) and “^“ (circumflex) can be used to set and clear a bit in a
register consisting of 3 bits. As such, several outputs can be enabled or disabled
simultaneously. For example, the statement:
1u setnmr3 ^8^9 ; switch QNP to X

disables the output channels 8 and 9 of NMR3.
The statement setnmr must be specified behind a delay (in the above examples it is 1 μsec).
The minimum delay is 50 ns.
An alternative format for the setnmr command allows the input of whole words in
hexadecimal:
setnmr3 0xffff0000 ; set the high 16 bits of nmr word 3.

13.2.2 NCO Control

The control of the NCOs has been simplified and put together into the
reset command (see the next table). Reset of each NCO in each channel can be done
individually (please note that a delay has to be specified at the beginning of the line).
Different reset commands for different channels can be combined:
1ureset:f1:f2 ; reset all NCOs on channel f1 and f2
1ureset1:f2 reset4:f3 ; reset NCO1 on channel f2 and NCO3
 ; from NCO2 on f3

Command Action

reset set accumulator to 0, reset NCO1, 2 and 3 from accum.
reset1 reset NCO1 to 0
reset2 reset NCO2 to 0
reset3 reset NCO3 to 0
reset4 reset NCO3 with phase from NCO2
reset5 reset NCO3 with phase from NCO1
reset6 reset NCO2 with phase from NCO1
reset7 reset NCO3 from NCO2, reset NCO2 from NCO1
reset8 reset NCO3 and NCO2 from NCO1
reset9 reset NCO1 from accumulator
reset10 reset NCO2 and NCO1 from accumulator
reset11 reset NCO3 from NCO2, NCO2 and NCO1 from accum.
reset12 = reset

Table 13.1: Reset commands

13.2.3 Real Time Pulses RTP

The real time outputs are used for the control of the digitizer. They are set implicitly with the
go command in pulse programs. If an explicit control is needed, the command
setrtp<logical channel> | <bit> ^ <bit> can be used. For channel F1, for
example, the command setrtp1 would be used.

Miscellaneous

H166633_15_015 109 / 128

The usage of setrtp is analogous to the setnmr commands. Table Table 13.2 [} 109]
describes the assignment of these bits.

Bit# Symbolic Name in Pulse
Program

Action

0 START_NEXT_SCAN Tell receiver to acquire TD points (is
switched off automatically)

1 DWELL_HOLD/
DWELL_RELEASE

Mute/Continue acquisition of TD points

26 REC_BLK/REC_UNBLK Start/stop acquisition on receiver
(generates RGP_HPPR, RGP_ADC,
RGP_RX automatically)

Table 13.2: Real Time Pulses on the TRX

The receiver gating pulses RGP_ADC, RGP_RX and RGP_HPPR are generated
automatically. An individual setting of these pulses is not possible.
Additionally, there are some real-time parameters that are set via GTU.
The syntax is similar to the real-time pulses above, but index zero is used instead of the
logical channel in the setrtp command:
setrtp0 | <bit> ^ <bit>

Bit# Symbolic Name in Pulse
Program

Action

0 LOCKH_ON/LOCKH_OFF Lock Hold

1 SHIM_XY_RAMP_ON/
SHIM_XY_RAMP_OFF

2 HOMOSPOIL_ON/
HOMOSPOIL_OFF

Homospoil gradient on/off

6 TTL1_LOW/TTL1_HIGH

7 TTL2_LOW/TTL2_HIGH

8 TTL3_LOW/TTL3_HIGH

9 TTL4_LOW/TTL4_HIGH

47 RCP_HPPR_MODE (former
INTERLEAVE_INCR)

Switch to next mode in Hppr module

Table 13.3: Real Time Pulses on the GTU

13.3 Miscellaneous Statements

13.3.1 Receiver Gain Lists

It is possible to vary the receiver gain of the used receiver channels during pulse program
execution.
This can be achieved by using receiver gain lists.
Similar to the other lists occurring at several places in this manual such a receiver gain list is
defined and initialized as follows:
define list<receiverGain> rgList = {1 2 4 8 45.2}

Miscellaneous

110 / 128 H166633_15_015

Please note that the assigned values can be floating point numbers. The user not necessarily
has to take care of the exact values he provides (due to the fact that the hardware only allows
for certain discrete receiver gain values) because the software will automatically select the
actually allowed values closest to the list values.
The receiver gain where the list pointer currently points to can be assigned to a logical
channel by the following syntax:
d1 rgList:f1

where the delay d1 and the channel f1 were just exemplarily chosen. When this statement is
executed after the list definition without further modifications, in the above example then the
value 1 will be loaded to the receiver routed to the logical channel f1.
To modify the list pointer, the usual modification methods were provided:

rgList.inc ;increment the list pointer

d1 rgList:f1 ;now the value 2 will be assigned to channel
f1

rgList.dec ;decrement the list pointer

d1 rgList:f1 ;now the value 1 will be assigned to channel
f1

"rglist.idx = 3" ;set the list pointer to position 3

;(counted from 0)

d1 rgList:f1 ;now the value 8 will be assigned to channel
f1

rgList.res ;reset the list pointer to position 0

d1 rgList:f1 ;again the value 1 will be assigned to channel

;f1

To directly assign a specific value to a channel without globally changing the list pointer one
can also use the []-operator:

d1 rgList[2]:f1 ;assign the third value, here 4, to channel f1

d1 rgList:f1 ;again the value 1 will be assigned to channel

;f1

In order to fit loop counters in a pulse program to a receiver gain list, the length of the list can
be accessed via:
"l1 = rgList.len"

13.3.2 Assignment of Transmitter Blanking Pulses: blktr

The transmitter blanking pulses are normally set by the edscon preset parameters (
BLKTR[1...8]). They can, however, also be declared at the beginning of the pulse program
using the syntax:
blktr<channel number> = <duration>

Example:
"blktr1=3u"

Miscellaneous

H166633_15_015 111 / 128

NB: for AV I and II the assignment of the BLKTR parameters to channels is different to those
of AV III. In the former the assignment was a logical assignment, i.e. if F1 controlled SGU2
and from there amplifier 3, BLKTR1 was applied to channel F1 and in this way to amplifier 3,
whereas in AV III BLKTR is always applied to the amplifier with the same number (which is
determined by the blanking signal of this amplifier).

13.3.3 Printing Messages

It seems that almost all programming languages have been invented to offer some way to
write "hello world": here is the way how to achieve this with the pulse programming language:
The statement print prints messages during the execution of the pulse program. Such
messages should begin either with "error" or with "warning". They are useful in cases where
the pulse program itself detects an error condition or follows a different path (see goto in the
section The Unconditional goto Statement [} 69]). An Example is
print "warning: Hello World"

prints the message Hello World during runtime of an experiment. The timing of the printout
follows the interpretation of the pulse program on the TCU and therefore may be ahead in
time of the execution of the pulse program. However, for printing an error message in a case
where the program must be aborted and for debugging complex pulse programs it could be
helpful.
You can also write to a file with this command: if the statement in quotes begins with the word
file: the next word is interpreted as a filename and the rest of the string as message which
is written into that file. Example:
print "file: tcutext hello from tcu"

will generate the file tcutext in the raw data directory and its contents will be "hello from tcu".

13.3.4 Specify a Minimum Required Version

If you write and distribute your own pulse programs you may want to specify a minimum
version of TopSpin that is at least required for your pulse program to work properly. This can
be achieved by the optional pulse program statement require.
The general syntax is:
require “<program name> <major version>.<minor version>.
<patchlevel>”

Currently, only “TopSpin” is supported as program name (white spaces inside the relation will
be ignored).
For example
require “TopSpin 4.1.0 ”

will abort with an explanatory error message if your pulse program is executed in any version
of TopSpin older than 4.1.0.
Please note that this functionality is available starting with TopSpin 4.0.8.
Older versions of TopSpin will nevertheless also abort with an error message, even though
the error message will then be a compilation error due to an unknown syntax element and
therefore less clear to understand.

13.3.5 Force FID-Scaling

For certain experiments that vary the number of scans per FID (NS) during the runtime of the
pulse program, it might be useful to scale each FID individually by the respective number of
accumulated scans (NS).

Miscellaneous

112 / 128 H166633_15_015

This can be achieved by using the statement scaleByNs at the beginning of the pulse
progam.
For example, in the following hypothetical segment of a 2D pulse program, NS is set to ‘4’ for
the first FID, and then is always increased by a factor of 2 for each of the next FIDs.
The scaleByNs command ensures that all FIDs are divided by their respective NS and
therefore become comparable at the end of the experiment.

scaleByNs

"l13=4"

1 ze

2 30m

3 d1

"ns = l13"

p1 ph1

go=3 ph31

30m wr #0 if #0 ze

"l13 = l13 * 2"

lo to 2 times td1

exit

13.3.6 Generating a Manifest File

General Idea:

A manifest block is a special block of text in the pulse program which will not directly be
interpreted as an actual pulse program statement but written to a text file “manifest.txt” in the
current dataset directory.
The main purpose of this feature is that such a manifest block can be used to define
statements and processing recipes for the current experiment in a hierarchical, machine
readable data format (such as XML or JSON) which can be further processed by other third
party software (such as XML-parsers or interfaces to data bases).
In order to allow as much flexibility as possible in terms of the target format or language, the
manifest block itself will not be checked for valid syntax by TopSpin; this responsibility is left
to the user and his dedicated tool chain or application for post-processing of the manifest
files.
The only point where the pulse program syntax comes into play is that there exists the
possibility to evaluate pulse program variables within a manifest block – then the actual
current value of the variable will be written into the manifest file.

Syntax
A manifest block is enclosed between the two tokens manifest_append and
manifest_end and can be defined (in an arbitrary number) and used only at compile time,
i.e. before the first ze command in the pulse program.

Miscellaneous

H166633_15_015 113 / 128

The first manifest block of the pulse program will override an existing manifest file in the
current data set, but all succeeding blocks will be appended.
In case no manifest block is defined in the pulse program a potentially existing manifest file
will be deleted in the current dataset.
Between the manifest tokens, any kind of text is allowed, i.e. alphanumeric characters,
blanks, tabs, newlines, as well as special characters (i.e. "!,:;+\-*/=(){}<>^[]|#&_%?@~°§ etc.)
A manifest block can be written either in one single line or may also contain several lines in
the pulse program. If it contains several lines, each line in the pulse program will also result in
a single line in the file “manifest.txt”. Thereby also spaces will be kept in order to maintain the
manifest block’s indentation in the file “manifest.txt”.
A backslash at the end of a line will result in an ignored line break and no backslash in the file
“manifest.txt”. If a backslash at the end of a line should explicitly be printed into the file
“manifest.txt”, this backslash should be followed by a space.
The character $ is also allowed but has a special meaning as it can be used to retrieve the
value of a variable known to the pulse program parser. Therefore, all alphanumeric
characters following a $ without blanks will be interpreted as variable names.
And as a result, the current value of these variables will be printed into the manifest file.

For example,
define delay timespan

"timespan=42.0"

"p1=5"

manifest_append<first>

< timespan = "$timespan" unit="s" />

< p1 = "$p1" unit="us" />

</first>manifest_end

"p1=p1/2"

"timespan=17"

manifest_append

<second>

 < timespan = "$timespan" unit="s" />

 <inner>

 < p1 = "$p1" unit="us" />

 < timespan+p1 = "$timespan + $p1" />

 </inner>

</second>

manifest_end

will generate the following entries in the manifest file:

<first>

< timespan = "42.000000" unit="s" />

Miscellaneous

114 / 128 H166633_15_015

< p1 = "5.000000" unit="us" />

</first>

<second>

 < timespan = "17.000000" unit="s" />

 <inner>

 < p1 = "2.500000" unit="us" />

 < timespan+p1 = "17.000000 + 2.500000" />

 </inner>

</second>

Please note that, in case a variable is modified by multiple relations (like timespan and p1
in the example above), always the most recent value will be printed into the manifest file.
In this way, the change of a variable can be tracked by positioning several manifest blocks
between the modifications.

Contact

H166633_15_015 115 / 128

14 Contact
Manufacturer

Bruker BioSpin GmbH
Rudolf-Plank-Str. 23
D-76275 Ettlingen
Germany

E-Mail: nmr-support@bruker.com
http://www.bruker.com
WEEE DE43181702

Bruker BioSpin Hotlines
Contact our Bruker BioSpin service centers.
Bruker BioSpin provides dedicated hotlines and service centers, so that our specialists can
respond as quickly as possible to all your service requests, applications questions, software
or technical needs.
Please select the service center or hotline you wish to contact from our list available at:
https://www.bruker.com/service/information-communication/helpdesk.html

mailto:nmr-support@bruker.com
http://www.bruker.com
https://www.bruker.com/service/information-communication/helpdesk.html

Contact

116 / 128 H166633_15_015

List of Figures

H166633_15_015 117 / 128

List of Figures

Figure 5.1: An example for rules 1 and 2... 43
Figure 5.2: An example for rule 3... 44
Figure 5.3: An example for rule 3 - DEPT.. 45
Figure 5.4: Individual alignment with 2*d0+p1 > p3 > p2 ... 46
Figure 5.5: Individual alignment with p2 > 2*d0+p1 > p3 ... 46
Figure 5.6: Individual alignment with d0+p1/2 > p3 > p2 .. 46
Figure 5.7: Individual alignment with p3 > 2*d0+p1 > p2 ... 47
Figure 9.1: Pulse starts immediately after 2 rotation periods... 79
Figure 9.2: Pulse starts after sync delay.. 80
Figure 9.3: Pulse starts after spincnt rotor periods and sync delay ... 80
Figure 9.4: Pulse starts after 1 rotation period in the middle of the next.. 81
Figure 9.5: Pulse starts in the middle of the next rotation period... 81

List of Figures

118 / 128 H166633_15_015

List of Tables

H166633_15_015 119 / 128

List of Tables

Table 2.1: Font and Format Conventions ... 11
Table 2.2: Pulse program example... 12
Table 3.1: Pulse generation statements ... 17
Table 3.2: Frequency modifiers .. 21
Table 3.3: An example of a shape pulse list ... 35
Table 4.1: Delay generation statements ... 37
Table 6.1: Decoupling statements .. 49
Table 6.2: Available CPD statements ... 50
Table 6.3: Statements available to build CPD sequences.. 51
Table 6.4: Broadband and GARP CPD sequences .. 52
Table 6.5: MLEVSP and MPF7 CPD sequences.. 52
Table 7.1: Example of a CAGPARS setting.. 62
Table 8.1: Constants in the relation interpreter... 65
Table 8.2: Functions in the relation interpreter ... 65
Table 8.3: Parameters in relations.. 67
Table 9.1: The lo statements .. 69
Table 9.2: Using #define, #ifdef, #include statements... 71
Table 9.3: Different compile time conditions... 74
Table 9.4: A condition evaluated at compile time ... 74
Table 9.5: Conditional pulse program execution .. 74
Table 9.6: Statements to suspend pulse program execution.. 76
Table 9.7: Commands for independent channels ... 77
Table 9.8: Commands for rotor controlled experiments.. 78
Table 10.1: Examples of the usage of the go or gonp statement ... 84
Table 10.2: The contents of the file De.incl for AV and AV-II spectrometers.. 86
Table 10.3: The contents of De.incl for AV-III spectrometers ... 86
Table 10.4: The same pulse program based on go, adc/rcyc, and adc/eosc ... 87
Table 10.5: Receiver phase setting without and with recph ... 87
Table 10.6: Usage of st and st0: noediff pulse program ... 90
Table 10.7: Writing acquisition buffers to disk .. 91
Table 11.1: Allowed combinations of FnMODE and mc clauses .. 95
Table 11.2: Results of use of different FnMODEs .. 101
Table 11.3: Parameter calculation from complex point indices .. 102
Table 13.1: Reset commands... 108
Table 13.2: Real Time Pulses on the TRX ... 109
Table 13.3: Real Time Pulses on the GTU ... 109

List of Tables

120 / 128 H166633_15_015

Glossary

H166633_15_015 121 / 128

Glossary

Glossary

122 / 128 H166633_15_015

Index

H166633_15_015 123 / 128

Index

Symbols
#addphase statement 51
#define statement 20, 40, 72
#endif statement 72
#ifdef statement 72
#ifndef statement 72
#include statement 72
#setphase statement 51
* operator 14, 19, 40
.dec postfix 18, 23, 31, 38
.idx postfix 19, 23, 32
.inc postfix 18, 23, 31, 38
.res postfix 18, 23, 31, 38

A
abs function 65
absolute power of a shaped pulse 34
acos function 65
acquisition scan 15
ADC blanking 83
adc statement 40, 83, 85, 87, 91
amplitude lists 35
AMX spectrometer 11
AQ parameter 15, 20, 37, 83
aq statement 40
AQS rack 11
AQSEQ parameter 93
aqseq statement 93
AQX rack 11
artefact suppression 15
ARX spectrometer 11
asin function 65
ASX spectrometer 11
atan function 65
Avance.incl include file 107
Avance-AQS spectrometer 87

B
BILEV decoupling 54
bilev statement 55
BLKTR" 110
blktr1-blktr8 statements 110
boolean expression 65
Broadband decoupling 51
Bruker pulse programs 12

C
caret postfix 19, 23, 27, 31, 39
center 45
CNST parameters 29

cnst0-cnst31 statements 29
compilation of a pulse program 11
composite pulse decoupling 49, 50
conditional pulse program execution 71
continuous wave decoupling 14, 49
cos function 65
cos gradient function 59
CPD sequences 51
cpd1-cpd8 statements 49, 50
cpdhd1-cpdhd8 statements 49
cpdng1-cpdng8 statements 51
cpdngs1-cpdngs8 statements 51
cpdngs29 statement 88
CPDPRG1 - CPDPRG8 parameters 50
cpds1-cpds8 statements 49, 50
currentpower statement 34
cw statement 14, 49

D
D" 37
d0-d63 statements 37, 40, 41, 51
data set list 91
dd0-dd63 statements 40
DE parameter 15, 37, 83, 86
de statement 37, 86
De.incl include file 86
DE1 macro 86
DE1 parameter 15, 37, 83
de1 statement 40, 86
DE2 parameter 15, 37
de2 statement 37, 40
DE3 macro 86
de3 statement 40
DEADC macro 86
DEADC parameter 15, 37, 83
deadc statement 37, 86
decoupling

frequency 49
phase 50

default
channel 14
power level 14

define delay statement 38, 41
define list\\> statement 18, 19, 22, 23, 31, 32, 35,

36, 38, 39
define loopcounter statement 70
define pulse statement 17
DEG constant 65
DEPA macro 86
DEPA parameter 15, 37, 83
depa statement 37, 86
DERX macro 86
DERX parameter 15, 37, 83

Index

124 / 128 H166633_15_015

derx statement 37, 86
df statement 91
digitizer 83, 84, 85, 88
disk file pointer 91
do statement 14, 49, 54
double quantum filtering 72
dp0-dp31 statements 28
dpu0-dpu63 statements 20
DS parameter 14, 15, 27, 75, 83, 84, 85
DSLIST parameter 91, 107
du0-du31 statements 69
dummy scans 14, 15, 27, 75, 83, 84, 85
DW parameter 20, 37
dw statement 40
dwell time 87, 88
DWELL_GEN macro 87
DWOV parameter 37
dwov statement 37

E
E constant 65
eda command 11, 17, 18, 27, 31, 33, 34, 37, 57,

58, 70, 83
edasp command 21
edcpd command 50
edcpul command 11
edlist command 32, 38
edpul command 11, 12, 87, 107
edscon command 15, 86
end-of-scan handling 87
eosc statement 85, 87
eoscnp statement 87
exec_enable 77
exec_on_chan 77
exec_on_other 77
exec_wait 77
exit statement 15, 16
expinstall command 12

F
F0 clause 99, 100
f1 21, 23, 25, 31, 33, 44, 49
F1EA clause 95, 101
f1-f8 channels 21
F1I clause 99, 101
F1PH clause 95, 101
F1QF clause 95, 101
F2EA clause 98, 101
F2I clause 101
F2PH clause 98, 101
F2QF clause 98, 101
fid file 15, 91, 92
finally 84
fixed delay 38
FnMODE parameter 95
fq statement 51, 54
fq1-fq8 statements 53

FQ1LIST-FQ8LIST parameters 53
frequency

channel 21
list 51

frequency list 53
frequency offset 54
frequency setting in CPD programs 53

G
Garp decoupling 51
Garp sequence 51
gauss gradient function 59
Global Alignment 45
go command 11, 72, 92
go statement 13, 15, 27, 40, 83, 84, 85, 86, 91
go to 55
go1-go8 statements 107
gonp statement 83, 84, 85, 91
gosc statement 83, 85, 91
goscnp statement 83, 85, 91
goto statement 13, 69
gp0 58
GP031 gradient parameter table 57, 58
GPX0-GPX31 parameter 57
GPY0-GPY31 parameter 57
GPZ0-GPZ31 parameter 57
gradient

coil 57
strength 57

gradient filename 58
gradient function 59
gradient strength 58
gradient, rectangular 57, 59
gradient, shaped 57, 58, 59
gradient, strength 58
groff statement 57
gron0-gron31 statements 57
gs command 11, 18, 37, 54

H
hd statement 49
homodecoupling 49

I
id0-id63 statements 40, 92
if statement 91, 92
Individual Alignment 45
intermediate frequency 83, 87
interrupt handling 87
interrupt signal 87
ip0-ip31 statements 28, 92
ipp0-ipp31 statements 27, 83
ipu0-ipu63 statements 20
iu0- iu31 statements 69

Index

H166633_15_015 125 / 128

J
jump to label statement 51, 54

L
L" 54, 69
l0-l31 statements 54, 69
lalign 45
LBLF1 label 101
LN10 constant 65
lo to label statement 13, 51, 54, 69
log function 66
log10 function 66
logical expression 65
loop statements 69

in pulse programs 69
loop statements in CPD programs 54

M
m option (delay) 37
max 41
max function 65
mc statement 85, 91, 92, 95
MC2 parameter 96
MCREST delay 101
MCWRK delay 101
memory buffer 83, 90
mp option (pulse) 17

N
NBL parameter 69, 85, 90, 91, 93
noedif pulse program 91
noesyi4pr3d pulse program 98
NS parameter 14, 15, 75, 83, 84
NUCLEI parameter 21

O
observe channel 83, 84

P
P" 17
p0-p63 statements 17, 20, 51
ParaVision software 60
pcpd1-pcpd8 statements 51
PH_ref parameter 84
ph0-ph31 statements 26, 27
phase

coherency 34
cycling 15
increment 27
list 14
resolution 25

phase program 14
PHCOR" 27
PI constant 65

pl statement 51
PL" 31
pl0-pl3 statements 31
plusminus gradient function 59
pow function 66
power level 14
preamplifier 83
pre-evaluation of a pulse program 20
pre-processed pulse program 72
pre-processor 72
pre-scan delay 15
PULPROG parameter 11
pulsdisp command 12
pulse

duration 17, 19
frequency 21
list 19
shape 33

pulse program
compiler 11, 60, 72, 92, 107

pulse shape absolute power 34
Pulse Train Alignment 45
pulse train definition 43

R
r 17, 18, 27, 37, 84
r1d gradient function 59
r2d gradient function 59
r3d gradient function 59
RAD constant 65
ralign 45
random 41
random delay 18, 37
random function 66
RCP0-RCP34 outputs 107
RCU unit 87, 107
rcyc statement 84, 85, 87
rcycnp statement 84, 87
rd0-rd63 statements 40
real time outputs 107
receiver

blanking 83
coil 57
gate 83
number 107
phase 15, 84, 87

rectangular
gradient 57
pulse 31

recycle delay 87
refalign 45
reference frequency 84
reference frequency shift

receive frequency shift 22
replace mode 85, 90
resume command 76
resume_calc 77
rf statement 91

Index

126 / 128 H166633_15_015

rotation matrix 60
rp0-rp31 statements 28
rpp0-rpp31 statements 27
rpu0-rpu63 statements 20
ru0-ru31 statements 69

S
s option (delay) 37
scan counter 13, 85
selno pulse program 85
ser file 91, 92, 93
setnmr0-setnmr8 statements 107
SFO1-SFO8 parameters 21
SGU unit 87
shape

file 33
offset frequency 34

Shape Tool 33, 58
shaped

gradient 57, 58
Simultaneous Pulses 43
sin function 66
sin gradient function 59
sinp gradient function 59
sp option (pulse) 17
sp0 33, 51, 52
SP07 parameter 33, 34
spincnt 78
spincnt_measure 78
spincnt_start 78
spincnt_use 78
spincnt_wait 78
sqrt function 66
st command 33, 58
st statement 69, 90, 92
st0 statement 69, 90, 92
stdisp command 33, 58
steady state condition 15
steady state conditions 75, 84
step gradient function 59
stop_calc 77
store_spinrate_d0 78
suspend command 76
Symbols and Conventions

Safety 9
syrec statement 83, 87

T
tan function 66
TCU unit 107
TD parameter 20, 69, 83, 85, 90, 91, 93
td1 statement 93
td2 statement 93
tr command 15, 83
trigger

events 74
inputs 74

trunc function 66

U
u option (delay) 37
up option (pulse) 17
user defined delay 38

V
V9 parameter 18, 37
VPLIST parameter 21

W
wr statement 15, 69, 91, 92, 95

Z
zd statement 14, 27, 84, 85, 90, 92, 95
ze statement 13, 14, 15, 27, 84, 85, 90
zg command 11, 72, 92, 95
zg option 77
zg pulse program 87
zgadc pulse program 87
zgcw30 pulse program 13
ZGOPTNS parameter 72

Bruker Corporation

info@bruker.com
www.bruker.com

Part No: H166633

●

	 Contents
	1 About This Manual
	1.1 Symbols and Conventions

	2 Basic Pulse Program Writing
	2.1 Introduction
	2.1.1 Spectrometer Naming Conventions
	2.1.2 Font and Format Conventions

	2.2 Pulse Program Library
	2.3 Pulse Program Display
	2.4 Basic Syntax Rules
	2.4.1 Line Orientation
	2.4.2 Comments
	2.4.3 Calculation of Parameters
	2.4.4 File Import
	2.4.5 Labels
	2.4.6 Pulse Power
	2.4.7 Decoupling
	2.4.8 Delay
	2.4.9 Pulse
	2.4.10 Data Acquisition
	2.4.11 The mc Macro
	2.4.12 Decoupler off Command
	2.4.13 Pulse Program Exit
	2.4.14 Phase Program Definitions

	3 Pulse Generation
	3.1 Pulse Duration
	3.1.1 p0-p63
	3.1.2 Fixed Length Pulses
	3.1.3 Random Pulses
	3.1.4 User Defined Pulses
	3.1.5 Pulse Lists Defined in the Pulse Program
	3.1.6 Manipulating Pulse Durations: The Multiplication Operator *
	3.1.7 Manipulating Pulse Durations: Changing p0-p63 by a Constant Value
	3.1.8 Manipulating Pulse Durations: Redefining p0-p63 via an Expression
	3.1.9 Manipulating the Durations of User Defined Pulses

	3.2 Pulse Frequency
	3.2.1 Frequency Channels
	3.2.2 Setting Frequency from Constants or Numbers
	3.2.3 Frequency Lists Applied to the Reference Frequency
	3.2.4 Frequency Lists Defined in the Pulse Program
	3.2.5 Frequency Lists Defined in a File
	3.2.6 Using Old Style Frequency Lists

	3.3 Pulse Phase
	3.3.1 Phase Program Definition
	3.3.2 Phase Program Syntax
	3.3.3 Phase Program Position
	3.3.4 Phase Cycling
	3.3.5 Phase Pointer Increment
	3.3.6 Adding a Constant to a Phase Program
	3.3.7 Phase Program Arithmetic
	3.3.8 Phase Program Modifications at Runtime
	3.3.9 Calculation and Usage of Phase Programs at Runtime
	3.3.10 Runtime Changes of the Phase Program Increments
	3.3.11 Phase Setting without Executing a Pulse
	3.3.12 Definition of Phase Programs Using List Syntax

	3.4 Pulse Power and Shape
	3.4.1 Rectangular Pulses
	3.4.2 Power Lists
	3.4.3 Shaped Pulses
	3.4.4 Shape Lists
	3.4.5 Amplitude Lists

	4 Delays
	4.1 Delay Generation
	4.1.1 d0-d63
	4.1.2 Random Delays
	4.1.3 Fixed Length Delays
	4.1.4 User Defined Delays
	4.1.5 User Defined Delay Lists
	4.1.6 Special Purpose Delays

	4.2 Manipulating Delays
	4.2.1 The Operator *
	4.2.2 Changing d0-d63 by a Constant Value
	4.2.3 Redefining d0-d63
	4.2.4 Manipulating the Durations of User Defined Delays
	4.2.5 max, min and random

	5 Simultaneous Pulses and Delays
	5.1 Rules
	5.2 Examples
	5.2.1 Rule 1
	5.2.2 Rule 2
	5.2.3 Rule 3
	5.2.4 Rule 4

	5.3 Pulse Train Alignment
	5.3.1 Global Alignment
	5.3.2 Individual Alignment

	6 Decoupling
	6.1 Decoupling Statements
	6.2 Decoupling Frequency
	6.3 Decoupling Phase
	6.4 Composite Pulse Decoupling (CPD)
	6.4.1 General
	6.4.2 Syntax of CPD Sequences
	6.4.3 Phase Programs in CPD Programs
	6.4.4 Frequency Setting in CPD Programs
	6.4.5 Frequency Setting from Lists
	6.4.6 Frequency Setting Using the Parameters CNST0-63
	6.4.7 Offset Frequencies
	6.4.8 Direct Specification of Frequencies
	6.4.9 Loop Statements in CPD Programs
	6.4.10 Manipulation of Loop Counters during Execution (BILEV Decoupling)
	6.4.11 Relations in CPD Programs

	7 Gradients
	7.1 Rectangular Gradients
	7.1.1 Gradient Ramping

	7.2 Shaped Gradients
	7.3 Gradient Lists
	7.4 Manipulation of Rectangular or Shaped Gradients
	7.4.1 Manipulation with Functions
	7.4.2 Manipulation by Recalculation

	7.5 General Gradient Statements
	7.6 Rotation and Scaling

	8 Relations
	8.1 The Relation Interpreter
	8.1.1 Syntax Elements
	8.1.2 Constants
	8.1.3 Functions
	8.1.4 Variables

	8.2 Compile Time and Run Time
	8.2.1 Compile Time
	8.2.2 Run Time
	8.2.3 Parameters

	9 Loops and Conditions
	9.1 The Unconditional goto Statement
	9.2 Loop Statements
	9.3 Loop Counter Lists
	9.4 Conditional Pulse Program Execution
	9.4.1 Conditions Evaluated at Precompile Time
	9.4.2 Setting of Precompiler Conditions
	9.4.3 Macro Definitions
	9.4.4 Conditions Evaluated at Compile Time
	9.4.5 Conditions Evaluated at Run Time

	9.5 Suspend/Resume Pulse Program Execution and Precalculation
	9.5.1 Changing Parameters Interactively during Pulse Program Execution

	9.6 Pulse Program Execution on Independent Channels
	9.7 Rotor Triggering in Pulse Programs
	9.7.1 Wait for Defined Number of Rotations
	9.7.2 Wait for Defined Number of Rotations and a Sync Delay

	9.8 Synchronization of a Pulse to a Constant Rotation Angle

	10 Data Acquisition and Storage
	10.1 Start Data Acquisition
	10.1.1 The Statements go=label, gonp=label, gosc, goscnp
	10.1.2 The Statements rcyc=label, rcycnp=label
	10.1.3 The Statements eosc, eoscnp
	10.1.4 The Statements ze and zd
	10.1.5 The Statement adc
	10.1.6 The Receiver Phase
	10.1.7 External Dwell Pulses

	10.2 Acquisition Memory Buffers
	10.3 Writing Data to Disk

	11 The mc Macro Statement
	11.1 The mc Macro Statement in 2D
	11.2 The mc Macro Statement in n-Dimensional Experiments
	11.3 Additional mc Clauses
	11.4 General Syntax of mc
	11.5 Advanced nD Sampling Techniques
	11.5.1 The Parameter FnTYPE
	11.5.2 Parameter Calculation from Complex Point Indices
	11.5.3 Old and New Syntax

	12 Subroutines
	12.1 Definition
	12.2 Subroutine Execution
	12.2.1 Subroutines with Variable Names
	12.2.2 Subroutines with Variable Names and Classes

	13 Miscellaneous
	13.1 Multiple Receivers
	13.2 Real Time Outputs
	13.2.1 Type 1 Outputs (“NMR control words“)
	13.2.2 NCO Control
	13.2.3 Real Time Pulses RTP

	13.3 Miscellaneous Statements
	13.3.1 Receiver Gain Lists
	13.3.2 Assignment of Transmitter Blanking Pulses: blktr
	13.3.3 Printing Messages
	13.3.4 Specify a Minimum Required Version
	13.3.5 Force FID-Scaling
	13.3.6 Generating a Manifest File

	14 Contact
	 List of Figures
	 List of Tables
	 Glossary
	 Index

