
Pulse Programming

With Python

Copyright (C) 2005 by Bruker BioSpin GmbH
Version: Dec. 1st, 2005

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means without the prior consent of the publisher.

1

Contents
1.Combining Python Programs and Pulse Programs..3
2.Python Functions To Compute Pulse Program Parameters...3
3.Examples... 6

3.1 How to execute the examples.. 6
3.2 Computing phase lists..6
3.3 Computing delays.. 8
3.4 Computing shapes..8

2

1. Combining Python Programs and Pulse Programs
TopSpin provides a way to combine pulse programs and Python programs in a single Python program file.
This feature allows pulse program designers to perform calculations using Python statements to generate
delays, pulses, phases, amplitudes, frequencies and powers for one or more pulse programs contained (or
referenced) in the same Python file.

When executing such a Python program, there are two possible results:

– A new pulse program which has the acquisition parameters set as computed by the Python statements
according to the intentions of the program designer. The resulting pulse program, whose name can be
defined in the Python program, can be executed repeatedly with the normal zg acquisition command. In
this case the Python program is in fact a pulse program generator,

– NMR raw or processed data. In this case it first acts a a pulse program generator as above. In addition, it
contains control statements to start acquisition or processing immediately. The Python program thus
represents a complete experiment (or even several): Starting the Python program means executing the
experiment(s).

Computing pulse program parameters with Python means that computation takes place before the pulse
program is executed in the spectrometer. Python does not provide a way of performing “real time“
calculations while the experiment is in progress. For this purpose, the corresponding pulse program
statements must be employed (e.g. "p13=p13 + (p1*3.5 + d2/5.7)*td", embedded in a pulse program
loop).

2. Python Functions To Compute Pulse Program Parameters
In order to manipulate pulse programs in Python, TopSpin provides a number of Python functions, outlined
in the following table. We do not explain the pulse program syntax here, please refer to the Pulse
Programming Manual for this purpose. You can open it from TopSpin's Help-->Manuals menu. In the next
chapter you will find a number of complete Python program examples containing real pulse programs.

All pulse programs contained in a Python program must have the following line included before of the actual
pulse program statements (typically before 'ze'):

;$EXTERN.

This line is treated as a comment by the pulse program compiler. It is recognized by the functions described
below as a tag where to insert parameter definition statements. It indicates that the pulse program may need
external parameters to be calucated by Python statements.

Python Function Description
DEF_PULSPROG(ppText)

Example:
ppText = """
1 ze
2 d1
 p1
 go=2
exit
"""
ppObject = DEF_PULSPROG(ppText)

Returns a pulse program object from a text
representing a pulse program in Bruker's pulse
program language. This object provides the
functionalities described below: setting pulse lengths,
delays, etc.

GET_PULSPROG_TEXT(ppName) Returns the pulse program text for the specified pulse

3

Python Function Description

Example 1:
ppText = GET_PULSPROG_TEXT('zgpr')
MSG(ppText) # print the text

Example 2:
ppText = GET_PULSPROG_TEXT('zgpr')
ppObject = DEF_PULSPROG(ppText)

program name. This function can be used in
conjunction with DEF_PULSPROG(ppText) so as to
construct a pulse program object if one does not want
to keep the pulse program text entirely in the pulse
program.

SAVE_SHAPE(name, type, amplitude, phase)

Example:
SAVE_SHAPE('sin.512', 'Excitation',
am, ph)

(assuming the lists am and ph have
been filled with amplitude and phase
values)

Given a list of amplitudes and phases (both as an a
array of floating numbers), this function stores the
values in a TopSpin shape file which is ready to be
used for data acquisition, or for display in TopSpin's
Shapetool.
„name“ is the shape file name, and „type“ defines the
shape type (excitation, inversion)

SAVE_GRADIENT(name, amplitude)

Example:
SAVE_Gradient('grad.256', am)

(assuming the list am has been filled
with amplitudes)

Given a list of amplitudes (as an a array of floating
numbers), this function stores the values in a TopSpin
gradient file which is ready to be used for data
acquisition, or for display in TopSpin's Shapetool.
„name“ is the shape file name, and „type“ defines the
shape type (excitation, inversion)

The following functions must be called for a pulse program object pp as defined with
pp = DEF_PULSPROG(ppText) in the form pp.<function name>(<arguments>)

DEF_PULSE(String name, double value)

Example:
value = 1.5
pp.DEF_PULSE('myp90', value)

This will insert:
define pulse myp90
"myp90=1.5"

Inserts a new pulse into the pulse program. The pulse
name will be <name>, its value will be <value>
microsec.
The pulse will be inserted before the ;$EXTERN tag,
which must be present in the pulse program.

As a name you may use any character String allowed
by the pulse program compiler. Particularly you may
use standard pulses (“p1“ etc.), which will override
the values set by 'eda'.

DEF_DELAY(String name, double value)

Example:
pp.DEF_DELAY('d3', 0.1)

This will insert:
"d3=0.1"

Inserts a new delay into the pulse program. The delay
name will be <name>, its value will be <value> sec.
The delay will be inserted before the ;$EXTERN tag.

As a name you may use any character String allowed
by the pulse program compiler. Particularly you may
use standard delays (“d1“ etc.), which will override
the values set by 'eda'.

DEF_LOOP_COUNTER(String name, int value)

Example:
pp.DEF_LOOP_COUNTER('counter1', 5)

This will insert:

Inserts a new loop counter into the pulse program.
The loop counter name will be <name>, its value will
be <value>.
The loop counter will be inserted before the
;$EXTERN tag.

4

Python Function Description
define loopcounter counter1
"counter1=5"
DEF_PULSE_LIST(String name, double[] values)

Example:
values = [0.5, 1.0, 1.5]
pp.DEF_PULSE_LIST('plist1',
values)

This will insert:
define list<pulse> plist1 =
 {0.5 1.0 1.5}

Inserts a pulse list into the pulse program. The pulse
list name will be <name>, its values will be <values>
in microsec.
The pulse list will be inserted before the ;$EXTERN
tag.

DEF_DELAY_LIST(String name, double[] values)

Example:
values = [0.5, 1.0, 1.5]
pp.DEF_DELAY_LIST('dlist1',
values)

This will insert:
define list<delay> dlist1 =
 {0.5 1.0 1.5}

Inserts a delay list into the pulse program. The delay
list name will be <name>, its values will be <values>
in sec.
The delay list will be inserted before the ;$EXTERN
tag.

DEF_POWER_LIST(String name, double[] values)

Example:
values = [-6.0, -3.0, 0]
pp.DEF_POWER_LIST('powlist1',
values)

This will insert:
define list<power> powlist1 =
 {-6.0 -3.0 0.0}

Inserts a power list into the pulse program. The pulse
list name will be <name>, its values will be <values>
in dB.
The power list will be inserted before the ;$EXTERN
tag.

DEF_AMPLITUDE_LIST(String name, double[]
values)

Example:
values = [60, 70, 80]
pp.DEF_AMPLITUDE_LIST('amlist1',
values)

This will insert:
define list<amplitude> amlist1 =
 {60.0 70.0 80.0}

Inserts an amplitude list into the pulse program. The
amplitude list name will be <name>, its values will be
<values> in per cent of the pulse power.
The amplitude list will be inserted before the
;$EXTERN tag.

DEF_FREQ_LIST(String name, double[] values,
String unit, String bias)

Example:
values = [100, 150, 200]
pp.DEF_FREQ_LIST('frlist1',
values, 'hz', 'sfo')

This will insert:

Inserts a frequency list into the pulse program. The
frequency list name will be <name>, its values will be
<values> in units defined by <unit> (must be “hz“ or
“ppm“), and by <bias> (must be “sfo“ or “bf“). The
frequency list will be inserted before the ;$EXTERN
tag.

5

Python Function Description
define list<frequency> frlist1 =
 {hz sfo, 100, 150, 200}
DEF_PHASE_LIST(int num, double[] values,
double incr, int fractionDigits)

Example:
pp.DEF_PHASE_LIST(10, ph10, 45, 2)

Appends a phase list as a phase program to the pulse
program. The phase program name will be 'ph<num>',
its values will be <values> in degrees. <incr> is the
phase increment in degrees when the pulse program
encounters an 'ip' statement.
The phases are appended with the specified number of
digits after the decimal point. -1 means full accuracy.

SAVE_AS(String name)

Example:
pp.SAVE_AS('my_new_pp')

Saves the pulse program under the specified name.
From now on it is available edpul , gs, zg, etc.

GET_TEXT()

Example:
MSG(pp.GET_TEXT())
Prints the pulse program text in a
window.

Returns the current text of the pulse program.

3. Examples

3.1 How to execute the examples
In order to execute the examples of the next sections, mark the desired complete Python program text with
the mouse (assuming you have opened this manual e.g. with Acrobat Reader) and copy it to the clipboard
with CTRL C. In TopSpin, type edpy example1 to open the Python editor, and paste the clipboard into the
text editor (CTRL V in Windows). Click on the Execute button of the editor to execute the program, or type
example1 into the TopSpin command line.

3.2 Computing phase lists
The Python program of this section consists of 2 parts: Part 1 is the actual pulse program in Bruker syntax,
part 2 consists of a number of Python staments. We will now explain the Python program in detail.

1. The pulse program text is defined by PPTEXT = """<text>""", where """ (3 quotes) is the
Python way of declaring a multi-line text.

1. The statement pp = DEF_PULSPROG(PPTEXT) creates a pulse program object from the pulse
program text. This enables us to apply the functions defined in the table of the previous chapter to
the pulse program using pp as a reference.

2. The statements
 phlist = [0,0,4,4]*2 + [2,2,6,6]*2 + [4,4,0,0]*2 + [6,6,2,2]*2
 phinc = 360/8
 for i in range(32):

phlist[i] = float(phlist[i])*phinc
compute a phase list with 32 phase values using Python syntax. In Python , [0,0,4,4]*2 is

6

equivalent to [0,0,4,4,0,0,4,4], and a '+' sign concatenates two lists. The for loop iterates
over the list to convert it to degrees.

3. The statement pp.DEF_PHASE_LIST(1, phlist, phinc, 1) applies the function
DEF_PHASE_LIST defined in the table of the last chapter to the pulse program. It creates a phase
program ph1 (because the first argument is a '1'), and appends it to the pulse program. The increment
value phinc is also passed on to the phase program and can be used inside the pulse program with
the ip command.

4. The purpose of the statement VIEWTEXT("", "", pp.GET_TEXT()) is to display what
pp.DEF_PHASE_LIST did with the pulse program: It opens a window shows the modified pulse
program text. When you run the Python program, you will see that the following was appended:

ph1 = (float,45.0) 0.0 0.0 180.0 180.0 0.0 0.0 180.0 180.0
 90.0 90.0 270.0 270.0 90.0 90.0 270.0 270.0
 180.0 180.0 0.0 0.0 180.0 180.0 0.0 0.0
 270.0 270.0 90.0 90.0 270.0 270.0 90.0 90.0
You may comment out VIEWTEXT by preceding it with a '#' character.

5. The statement ppName = "inadph.ppy" defines a name for the modified pulse program, and
pp.SAVE_AS(ppName) stores it under this name in the pulse program data base. It is now available
as any other pulse program for TopSpin commands such as edpul and zg.

At this point the Python program could be complete: A new pulse program is available that has the
computed phases included. When you execute the Python program, it is not required that an NMR
data set is currently displayed in TopSpin, because we did not make use of any data set properties so
far.

6. The last two statements in the Python program #PUTPAR("PULPROG", "inadph.ppy")
and #ZG() are commented out and have no effect. If you remove the comment character the
following will happen when executing the program:
- It is now required that an NMR data set is on the TopSpin screen. PUTPAR will set the acquisition
parameter PULPROG to the name inadph.ppy.
- Acquisition will be started with ZG()using this pulse program.

The Python program could even be further extended by appending processing functions such as
EFP().

Python pulse program. Computes the phase list ph1. Optionally starts acquisition.

PPTEXT = """
;inadph
;2D INADEQUATE phase sensitive
#include <Avance.incl>
"p2=p1*2"
"d4=1s/(cnst3*4)"
"d11=30m"
"d0=in0/2-p1*4/3.1416"
1 ze
 d11 pl12:f2
 d11 cpd2:f2
2 d1
3 p1 ph1

7

Python pulse program. Computes the phase list ph1. Optionally starts acquisition.

 d4
 p2 ph2
 d4
 p1 ph1
 d0
 p1 ph3
 go=2 ph31
 d1 mc #0 to 2 F1PH(ip1 & ip2, id0)
 d4 do:f2
exit
ph2=(8) 4 0 0 4 4 0 0 4 6 2 2 6 6 2 2 6
 0 4 4 0 0 4 4 0 2 6 6 2 2 6 6 2
ph3= 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
ph31= 0 3 2 1 3 0 1 2
"""
pp = DEF_PULSPROG(PPTEXT)
phlist = [0,0,4,4]*2 + [2,2,6,6]*2 + [4,4,0,0]*2 + [6,6,2,2]*2
phinc = 360/8
for i in range(32):

phlist[i] = float(phlist[i])*phinc
pp.DEF_PHASE_LIST(1, phlist, phinc, 2)

VIEWTEXT("", "", pp.GET_TEXT()) # for debugging
ppName = "inadph.ppy"
pp.SAVE_AS(ppName)
#PUTPAR("PULPROG", "inadph.ppy")
#ZG()

3.3 Computing delays and shaped pulses
The Python program of this section consists of 2 parts: Part 1 is the actual pulse program in Bruker syntax,
part 2 consists of a number of Python staments. We will now explain the Python program in detail.

1. The pulse program text is defined by PPTEXT = """<text>""", where """ (3 quotes) is the
Python way of declaring a multi-line text. It has the ;$EXTERN tag included as an indicator where th
computed delay must be inserted by the Python statements.

1. The statement pp = DEF_PULSPROG(PPTEXT) creates a pulse program object from the pulse
program text. This enables us to apply the functions defined in the table of the previous chapter to
the pulse program using pp as a reference.

2. The statement
 jxh = INPUT_DIALOG("ineptrdsp", "Please enter XH coupling:", ["J(XH)
(Hz) = "])
opens a dialog with the specified title and header inviting the user to enter a J coupling value. The
result is returned in the first element of the array jhx (in text string representation).

The statements
 d3 = 1/(6*float(jxh[0]))
 d4 = 1/(4*float(jxh[0]))
 pp.DEF_DELAY("d3", d3)

8

 pp.DEF_DELAY("d4", d4)
convert the entered text to floating numbers and calculate the delays d3 and d4. The respective
delay definitions are inserted into the pulse program before the ;$EXTERN tag using the
DEF_DELAY function.

3. The statement pp.DEF_PHASE_LIST(1, phlist, phinc, 2) applies the function
DEF_PHASE_LIST defined in the table of the last chapter to the pulse program. It creates a phase
program ph1 (because the first argument is a '1'), and appends it to the pulse program. The increment
value phinc is also passed on to the phase program and can be used inside the pulse program with
the ip command. The last argument defines the number of digits after the decimal point. This number
is applied when writing the list into the pulse program. -1 mean full precision.

4. The purpose of the statement VIEWTEXT("", "", pp.GET_TEXT()) is to display what
pp.DEF_PHASE_LIST did with the pulse program: It opens a window shows the modified pulse
program text. When you run the Python program and enter “5“ for the JXH coupling, you will see
that the following was inserted before ;$EXTERN:

 "d3=0.03333333333333333"
 "d4=0.05"
You may comment out VIEWTEXT by preceding it with a '#' character.

5. The next section of the Python program computes the amplitudes and phases of a shaped pulse and
needs Python's mathematical library. import math loads it to be ready for use.

6. amplitudes = [] defines an empty array to hold the shape's amplitude values.
for i in range(512):
 amplitudes.append(100*math.sin((3.1415*i)/512))
fills this array with 512 values, normalized to 100 (as required by the acquisition software), using the
sin() library function.

phases = [] # in degrees
for i in range(512):

if i<256:
phases.append(360*math.pow(float(i)/256, 3))

else:
phases.append(360*math.pow(float(512-i)/256, 3))

defines and computes the shape's phase values in a similar way.
The next statements define a file name for the shape, and store it as an "Excitation" shape into
TopSpin's standard place. You can view the computed result by opening this shape with TopSpin's
ShapeTool.

shapeName = "SinExam.512"
SAVE_SHAPE(shapeName, "Excitation", amplitudes, phases)

7. The last four statements in the Python program
 #PUTPAR("SPNAM2", shapeName)
 #PUTPAR("SPOFFS 2", "5.0")
 #PUTPAR("PULPROG", "inadph.ppy")
 #ZG()
are commented out and have no effect. If you remove the comment character the following will
happen when executing the program:
- It is now required that an NMR data set is on the TopSpin screen. PUTPAR will set the acquisition
parameters SPNAM2, SPOFFS 2, PULPROG to the specified values.
- Acquisition will be started with ZG()using this pulse program.

The Python program could even be further extended by appending processing functions such as

9

EFP().

Python pulse program. Computes the delays d3/d4 and a shaped pulse.
 Optionally starts acquisition

PPTEXT = """
;ineptrdsp
;INEPT for non-selective polarization transfer
;with decoupling during acquisition
;using shaped pulses for 180degree pulses on f1 – channel

#include <Avance.incl>
#include <Delay.incl>

;$EXTERN
"p4=p3*2"
"d12=20u"
"DELTA1=d4-cnst17*p12/2"
"DELTA2=d3-cnst17*p12/2"

1 ze
2 30m do:f2
 d1
 d12 pl2:f2
 (p3 ph1):f2
 4u
 DELTA1 pl0:f1
 (center (p4 ph2):f2 (p12:sp2 ph4))
 4u
 DELTA1 pl1:f1
 (p3 ph3):f2 (p1 ph5)
 4u
 DELTA2 pl0:f1
 (center (p4 ph2):f2 (p12:sp2 ph6))
 4u
 DELTA2 pl12:f2
 go=2 ph31 cpd2:f2
 30m do:f2 mc #0 to 2 F0(zd)
exit

ph1=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
ph2=0 2
ph3=1 1 3 3
ph4=0 2
ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
ph6=0 2 0 2 1 3 1 3
ph31=0 0 2 2 1 1 3 3
"""

import math
pp = DEF_PULSPROG(PPTEXT) # define a variable "pp" representing
the pulse program
jxh = INPUT_DIALOG("ineptrdsp", "Please enter XH coupling:",
 ["J(XH) (Hz) = "])
d3 = 1/(6*float(jxh[0]))
d4 = 1/(4*float(jxh[0]))
pp.DEF_DELAY("d3", d3)
pp.DEF_DELAY("d4", d4)
VIEWTEXT("", "", pp.GET_TEXT()) # for debugging

10

Python pulse program. Computes the delays d3/d4 and a shaped pulse.
 Optionally starts acquisition

calc. a sine shape (0..PI)
amplitudes = [] # normalized to 0...100
for i in range(512):

amplitudes.append(100*math.sin((3.1415*i)/512))

phases = [] # in degrees
for i in range(512):

if i<256:
phases.append(360*math.pow(float(i)/256, 3))

else:
phases.append(360*math.pow(float(512-i)/256, 3))

shapeName = "SinExam.512"
SAVE_SHAPE(shapeName, "Excitation", amplitudes, phases)
ppName = "ineptrdsp.ppy"
pp.SAVE_AS(ppName)
#PUTPAR("SPNAM2", shapeName)
#PUTPAR("SPOFFS 2", "5.0")
#PUTPAR("PULPROG", ppName)
#ZG()

11

	1.Combining Python Programs and Pulse Programs
	2.Python Functions To Compute Pulse Program Parameters
	3.Examples
	3.1How to execute the examples
	3.2Computing phase lists
	3.3Computing delays and shaped pulses

