

NMRSim

Experiment Simulator
 User Manual
 Version 007

Innovation with Integrity

NMR

Copyright © by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher. Product names used are trademarks or registered trademarks of their respective holders.

© October 05, 2021 Bruker Corporation

Document Number: 10000056841

P/N: H9171SA1

Contents

1	Introducti	on	7
	1.1	New Features	7
	1.1.1	NMRSim 6.4	7
	1.1.2	NMRSim 6.0	7
	1.1.3	NMRSim 5.7	8
	1.2	Installation	8
	1.2.1	TopSpin	8
2	Theoretica	al Background	9
	2.1	Liouville Equation	9
	2.2	Relaxation	10
	2.3	Flow of the Simulation	11
3	Using the	Program	13
•	3.1	Program Start	13
	3.1.1	Parameter Definitions	13
	3.2	Exiting NMRSim	14
	3.3	User Data Directory	14
	3.4	Main Menu Commands	14
	3.4.1	File	14
	3.4.2	NMR Wizard	15
	3.4.3	Edit	16
	3.4.4	Go	17
	3.4.5	Utilities	19
	3.4.6	Options	19
	3.4.6.1	Options Dialog	19
	3.4.6.2	Processing Parameters	20
	3.4.6.3	Output File	20
	3.5	The "sample" - Spin System Definition	21
	3.6	Pulse Sequence Definition	22
	3.7	Running the Simulation	23
4	Bloch Sim	ulator	25
	4.1	Toolbar	26
	4.2	Calculate	26
	4.2.1	Time Evolution	26
	4.2.2	Excitation Profile	29
	4.2.3	RF Field Profile	31
	4.2.4	Waveform Analysis	32
	4.3	Examples	36
	4.4	Waveform Analysis using the TopSpin Shape Tool	38
5	Pulse Pro	gram Display	39
-	5.1	Display Control	42
	5.2	Pulse Program Text Editor	43

	5.3	Pulse Program Visualization Details	44
	5.3.1	Spectrometer Channels	44
	5.3.2	Pulse Trains, Virtual Channels	44
6	Pulse Pro	grams	47
-	6.1	Pulse Program Commands Implemented in NMRSim	47
	6.2	Decoupling	47
	6.3	New Commands	47
7	Cnin Cuat	on Definition Summers	40
1		Suntax	49
	7.1	Syntax	49
	7.1.1		49
	7.1.Z		51
	7.1.3		52
	7.1.4	weak	52
	7.1.5	Dipolar	52
	7.1.6	Qpolar	53
	7.1.7		53
	7.1.8	Endmol	55
	7.1.9	Add	55
	7.2	Initial Spin System State	56
	7.3	Spin System Variables	56
	7.4	Preprocessor Commands	57
	7.5	Spin System Limitations	58
8	NMRSim F	Parameter Definition	59
	8.1	Durations	59
	8.2	Radio Frequency Field Intensities	59
	8.3	Size Parameters	59
	8.4	Error Checking	59
	8.5	Parameter Description	59
	8.6	Expressions in Pulse Programs	61
٥			63
9		What is NMP Wizard	63
	9.1	Using NMP Wizard	62
	9.2	Where are the limite 2	60
	9.5		09
10	Gradient S	Spectroscopy	73
	10.1	Gradients in Pulse Programs	73
	10.2	Gradients in NMRSim	73
	10.2.1	Numerical Simulation of Gradients	73
	10.3	Examples of Gradient Experiments	73
	10.3.1	Decay of Magnetization Under the Influence of Gradients	74
	10.3.2	COSY Experiment	74
11	Examples		77
	11.1	How to Setup a New Experiment	78
	11.2	The First 1D Experiment	78
	11.3	Excitation Profiles of Shaped Pulses	80
	11.4	Selective COSY	81

	Index		111
	List of Ta	ables	109
	List of Fi	gures	107
12	Contact.		105
	11.14	Phase Sensitive COSY Experiment Using the mc Command	
	11.13.2	Watergate	101
	11.13.1	Gradient COSY Experiment	
	11.13	Gradient Experiments	
	11.12	1D Heteronuclear Correlation	
	11.11	Inverse Experiment	
	11.10	Heteronuclear Correlation	
	11.9	Inversion Recovery Experiment	
	11.8	Phase Sensitive DQ COSY Experiment	
	11.7	J Resolved Experiment	89
	11.6	DEPT Experiment	
	11.5	1D HOHAHA with Z-filter	

1 Introduction

NMRSim[™] is a program for the simulation of a wide range of NMR experiments. The program is a part of the Bruker TopSpin software package.

NMRSim uses the standard Bruker pulse sequences and experiment definition parameters used on AVANCE[™] spectrometer series. All pulse programs are executed in the same way as they run on the NMR hardware. The output of the simulation is a FID or SER file in the standard TopSpin format. The "sample" is defined using simple language, or optionally a chemical structure file may be used. In such case TopSpin internal chemical shift prediction is used to generate the necessary shifts and couplings.

The ability to use Bruker pulse programs offers the possibility of pulse sequence tuning or the analysis of complex NMR experiments under ideal conditions without instrumental imperfections.

NMRSim is designed to simulate the behavior of general homo- and hetero-nuclear spin systems. Spin quantum numbers up to 2 are supported. The simulation is based on the solution of the quantum mechanical Liouville equation. The spin system evolution during the radio-frequency pulse is taken into account, so you can simulate rotating frame magnetization transfer experiments (TOCSY or HOHAHA). The implementation of gradients allows simulation of gradient enhanced experiments.

NMRSim contains several additional modules

- The **NMR-Wizard** allows a basic set of NMR experiments for given structure to be calculated, it is not necessary to enter or modify any parameters.
- The **Bloch Module** allows different features and behavior of shaped pulses to be studied.
- The **Pulse Program Display** may be used for the visualization or editing of Bruker pulse programs.

1.1 New Features

1.1.1 NMRSim 6.4

This version introduces a major enhancement - simulation of non uniform sampled 2D spectra (NUS).

Additional improvements:

pulse program display:

- · support for experiments using 3D gradients
- · multiple display windows may be opened

1.1.2 NMRSim 6.0

This is a major update for MS-Windows, Linux and macOS. A new user interface replaces the old, platform depended solutions. This makes NMRSim[™] independent of obsolete technologies. The installation of X11 server on macOS is no longer required.

- The user interface has been simplified, all parameters or options for the simulation are now available from one dialog.
- Chemical structure (MOL) files may be used now as spin system definition.

 The NMR-Wizard has been completely reworked and offers now a simple user interface for chemists. Only one click is necessary to calculate an 1D or 2D NMR spectrum from your structure.

The following functions are not available in the new release:

- · Calculation and display of energy levels.
- Direct calculation of 1D spectra it was replaced thru new NMR Wizard.
- Parameter optimization.
- Propagator calculation.
- · Graphical assistant.
- · Several command line options duplicating other functionality were also removed.

1.1.3 NMRSim 5.7

For MS-Windows , RedHat Linux and macOS.

This is the last version using the platform dependent user interface (e.g. MOTIF/X11 on Unix platforms).

1.2 Installation

Bruker software packages are distributed via download from Bruker Webpages, or on the Bruker Software DVD. Please refer to the respective TopSpin installation manual for details.

1.2.1 TopSpin

TopSpin must be configured before you start NMRSim. You should install the pulse programs using the TopSpin command **expinstall** and select the option **Install High Resolution Pulse Programs**.

Start NMRSim from the menu Analyse/Simulate Fid, or type in the command nmrsim.

2 Theoretical Background

The aim of this section is to provide some brief background information on the physical models and equations used for the simulation.

The simulation of an NMR experiment is based on the density matrix approach. Relaxation phenomena are implemented using a very simple model based on Bloch equations. Cross-correlation and cross-relaxation effects are neglected.

2.1 Liouville Equation

The basic equation describing the time development of the density matrix ρ is the *Liouville* equation:

$$i\hbar\rho(0) = [H, \rho]$$

$$H = H_0 + H_{rf}(t)$$

Where $\rho(0)$ is the density matrix and H is the spin system Hamiltonian.

The Hamiltonian may be divided into two parts. The time dependent part $H(t)_{rf}$ describes the interaction between nuclei and the radio frequency fields from the spectrometer. The constant part H_0 describes the nuclear spin system, or in other words, the sample.

$$H_{0} = \sum_{i} \omega_{i} I_{z}^{i} + \sum_{i < j} 2\pi J_{ij} I^{i} I^{j}$$
$$= \sum_{i} \omega_{i} I_{z}^{i} + \sum_{i < j} 2\pi J_{ij} (I_{z}^{i} I_{z}^{j} + I_{x}^{i} I_{x}^{j} + I_{z}^{i} I_{z}^{j})$$

The program finds the solution of the Liouville equation in the form of the exponential propagator:

$$U(t) = Te^{-\frac{i}{h}\int_{0}^{t}H(\tau)d\tau}$$

Only numerical approaches are used to calculate the propagator U. Thus there are no approximations resulting from analytical formulas or simplifications (e.g. weak coupling approximation). The time evolution of the density matrix is calculated using:

$\rho(t) = U\rho(0)U^{\dagger}$

Where $\rho(0)$ is the initial density matrix. These formulas are used for delays as well as for radio-frequency pulses. Thus, the exact evolution of the whole spin system during all pulses is taken into account. In this way, we are able to simulate the selective pulses and rotating-frame coherence-transfer experiments exactly. The propagators for radio-frequency pulses are phased using the appropriate phase specified by the pulse sequence, so you can use any general phase cycle. The propagator of the whole pulse sequence U_g is defined as a product of all interval propagators in the sequence:

$$U_g = \prod_{i=1}^{N} U_i$$

From this formula, it is clear that the most frequent numerical operation used by the simulator is *matrix multiplication*.

If you add one non-equivalent spin 1/2 nuclei to your spin system, you will double the dimension of the spin system density matrix, but the time necessary for matrix multiplication will increase by a factor of 8. Thus, there is a significant loss of performance for larger spin systems. Approximately $2^{*}10^{6}$ floating point operations are needed to multiply two $64^{*}64$ complex matrices, which represent operators for six nonequivalent spin 1/2 nuclei.

It is a different situation, if you increase the multiplicity of some nuclei. In this case the program uses the **group theory** to split the spin system into several smaller *fictitious*, independent *systems*. Performance loss is much less than the factor 8 for nonequivalent nuclei. So, if you simulate the behavior of spin systems with equivalent nuclei, use the multiplicity parameter in the spin system definition file. If you specify the equivalent nuclei using different spin labels but the same resonance frequency and couplings, you will get the same result, but the calculation will be far slower and the probability that you will exceed the program limits will be larger.

The acquired FID is calculated using the formula:

$$\operatorname{FID}(\mathbf{n}) = \operatorname{Tr}\left\{ e^{-iH_0\tau \mathbf{n}} U_g \rho(0) U_g^{\dagger} (e^{-iH_0\tau \mathbf{n}})^{\dagger} J^{\dagger} \right\}$$

Where J^+ is the creation operator for the total angular momentum of the observed nuclei, and Tr is the symbol for the trace operator.

2.2 Relaxation

Relaxation is implemented in NMRSim as follows:

During radio-frequency pulses the relaxation effects are neglected. During delays the program uses the Bloch equations for the relaxation of longitudinal magnetization:

$$\dot{M}_z = -\gamma (\ddot{B} \times \ddot{M})_z + \frac{M_z - M_0}{T_1}$$

Where M_0 stands for the thermodynamic equilibrium value. The rest of the density matrix (i.e. off diagonal elements) is multiplied by the factor:

$$e^{\frac{-t}{T^*}}$$

Where t is the interval length and T* is the effective relaxation time:

$$\frac{1}{T^*} = \sum_{j} \frac{1}{T_j}$$

When the full relaxation simulation is switched on, the initial relaxation matrix $\rho(0)$ in the equation above is regularly updated to its relaxed value. This allows the simulation of relaxation artifacts in 2D spectroscopy. All cross-correlation and cross-relaxation effects are neglected.

2.3 Flow of the Simulation

The flow of the simulation is the same as the flow of real NMR experiment:

All pulse program transients are calculated in the same order as they are carried out on a spectrometer.

The user can check the flow of an experiment by means of message lines in the NMRSim main window. The message lines display the current pulse program, transient (scan) and experiment numbers. When the program calculates the FID, this box displays the message Acquisition.

Generally it is not necessary to calculate the FID for every pulse sequence transient (scan). It is possible to accumulate the density matrix instead and to calculate the FID after the last scan. In this case the program displays the message Acquisition only at the end of the last transient. This approach substantially speeds up the simulation of multidimensional experiments with phase cycling.

All of the NMRSim calculations are highly optimized for maximum performance, the pulse propagators U are stored in memory for later use in subsequent scans or the next time increment in multidimensional experiment.

3 Using the Program

This chapter provides a short guide through the NMRSim menus and an introduction to the program user interface. Further detailed information about the experiment setup and several example experiments can be found in the section *Examples* [\triangleright 77].

3.1 **Program Start**

The easiest way is to use the **Applications/Simulate/Simulate FID** TopSpin flow menu, or type nmrsim on the TopSpin command line.

After the start NMRSim looks for further copies of itself (instances) that might already be running. When another instance is found, its window is display and terminates itself. In other words, every user may run only one instance of NMRSim at any given time.

3.1.1 Parameter Definitions

This set of options allows you to define several experiment parameters on the command line.

-config <name>

This command loads the predefined experiment configuration.

Example: nmrsim -config example1d.cfg

NMRSim starts and loads the predefined configuration file example1d.cfg from the user directory \$(HOME)/NMRSIM_SESSION/config.

-xconfig <path>

This loads the experiment configuration from the TopSpin acquisition parameters. The path specifies where the TopSpin acquisition parameter file is located.

Example: nmrsim -xconfig /u/data/guest/nmr/demo1d/1/acqus

-pulprog <name>

This selects the pulse program <name>.

nmrsim -pulprog cosydfsh

-spnam<n> <name>

Selects the waveform for shaped-pulse (acquisition parameter SPNAM0 .. SPNAM32). Example:

nmrsim -spnam0 gauss

nmrsim -config selcosy.cfg -spnam0 gauss

-p<n> <value>

Defines the pulse length parameter P0..63.

-d<n> <value>

Defines the delay length parameter D0..63.

It is possible to combine several parameter definitions on one command line:

nmrsim -config cosy.cfg -pulprog cosydfsh

In this example the program is started and the configuration file *cosy.cfg* loaded, then thes new pulse program *cosydfsh* is loaded. The order of parameters is substantial, the parameters are evaluated from left to right, therefore it does not make any sense to write:

nmrsim -pulprog cosydfsh -config cosy.cfg

The *-config* option will rewrite the pulse program selected in the *-pulprog* parameter!

3.2 Exiting NMRSim

You can exit the program in two ways: using the command **File/Exit** from the menu, or using the system menu (upper left corner of the NMRSim window). The first method saves the currents state (selected files, values of parameters) to disk, in the second case nothing is saved.

The saved state will be loaded at the next start from the file *session.cfg* in the user data directory.

3.3 User Data Directory

All private data (pulse sequences, spin system definitions,...), created by the user are saved in the private user directories, but it is also possible to load files from any other directory. In this way possible interference between potential users is minimized, and a common database of sequences and spin system definitions can be created.

The program creates user private directory *NMRSIM_SESSION* in your home directory:

c:\Users\Otto\NMRSIM_SESSION

/home/Otto/NMRSIM_SESSION

All example files are copied here after the first start of NMRSim.

3.4 Main Menu Commands

The NMRSim main window displays basic information about current settings:

- The names of selected experiment definition files.
- The duration of the last experiment in seconds.

The program commands are separated into several logical function groups, which will be described below.

3.4.1 File

The **File** menu allows you to select current pulse sequence and spin system definition data files, as well as the current delay, pulse and offset lists.

🖕 NMR-Sim Expert Window	X
File Edit Wizard Go Utilities Options Help	
Pulse program	
Spin system	
Delay list	
Pulse list	
Offset list	
Counter list	
Load experiment setup	
Save experiment setup	
Load experiment setup from Topspin	
Default experiment setup	
Job	
Exit	

Figure 3.1: File Menu

All information about experiment set-up is saved to disk as well. The configuration is automatically loaded during the start procedure from the file *session.cfg*, however the user has the possibility of creating any number of private configuration files (any name with the extension *.cfg) and read them manually using the **Load from file** command.

The configuration files reside in user private directories. Several predefined configuration files are installed in the demo user directory. You can use them to run several example experiments

The experiment setup menu block contains following commands:

- Load from file
- Save to file
- · Default settings

This command sets the default value for all NMRSim parameters. The default values allow you to execute a variety of NMR experiments without significant changes. Only spin system dependent parameters as evolution delays must be modified.

Load from TopSpin data set

This command reads the NMRSim experiment configuration from an existing TopSpin data set. Only data sets created on AVANCE spectrometers are supported.

• Job

NMRSim allows execution of several experiments in one job. The job description is saved in a plain text file and contains only the names of configuration files which are loaded and executed. The progress of the job is recorded in a simple protocol file.

The command **Job** only selects the job description file. The job may be started from the **Go** menu.

• Exit

This command closes all program windows, saves the current configuration on the disk and exits.

3.4.2 NMR Wizard

The NMR Wizard is a tool which allows NMR spectra to be calculated from your own chemical structure. The user must only select or draw a chemical structure, then the required spectra is calculated by pressing the appropriate button. Refer to the section *NMR Wizard* [> 63] for further details.

3.4.3 Edit

The experiment definition files, which are saved as general text files in ASCII file format (pulse programs, all lists, spin system definitions), are edited using a built-in text editor.

🖕 NMF	VMR-Sim Expert Window				
File E	dit Wizard Go Uti	ities Options Help			
Puls Pulse program umina\cpmg					
Spir	Spin system	hina\curcumina.ham			
Dela	Delay list				
Puls	Pulse list				
Offs	Offset list				
Dur	Counter list				
Dun	Job definition				

Figure 3.2: Edit Menu

The pulse program editor uses the on line graphical display of pulse programs.

The graphics is updated immediately, so you can follow the text changes in the displayed pulse program scheme.

Refer to the Pulse Program Display [> 39] section for further details.

3.4.4 Go

The menu element Go starts the simulation.

Figure 3.3: NMRSim Go Menu

It is possible to start the simulation immediately, by selecting **Run experiment**, or to check and edit the value of all parameters before the start using **Check Parameters & Go**.

The dialog box for editing the current experiment parameters displays only those parameters which are really used during the simulation.

4	Check the ex	periment param	neters	The second	-		x
E	periment Pa	rameters Outpu	t Processing		<u> </u>		
(Basics			1			
		PARMODE	2D 🔻	Dimension of the Experiment		P1 ph1=[0,2] P0 ph2=[0,2]	
		AQ_mod	qseq •	Receiver acquisition mode		0 606	
		FnMODE	tppi -	F1 acquisition mode	1	1 2 3	
		SF	300.13	MHZ SF		2E D1 D0 L D1	
		NUC 1	H 1			1m 615µ 1m	-
		01P	4.1	ppm transmitter onset		G0	
		500	1.2	time demain eize		1	
		ID INE1	0	une domain size	2	cosyph	Â
			400	Number of points in E1 dimension	3	;2D homonuclear shift correlation	
		NS	400	number of scans	4	;phase sensitive	
		Noise	0	S/N for 1 proton from 1 transient	5	i . Con locar Harborn	
		Relaxation	Acquisition -	Relaxation mode	7	;\$DIM=2D	
]	8	; \$TYPE=	Ξ
	Delays				9	; \$SUBTYPE=	
		D1	1.000m	s fixed delay	11	, COMMENT-	
(Pulses				12 13	<pre>#include <avance.incl></avance.incl></pre>	
		P0	90.00d	us fixed pulse	14		
		P1	90.00d	us fixed pulse	15	// + · · · = + - · 6 * //	
		PL1	100000	Hz power level	17	"INO-INTI"	
					18 19 20	"d0=in0/2-p1*2/3.1416-p0*2/3.1416"	
					21	1 ze	
					22	2 d1	
					23	3 b1 bu1	
					25	p0 ph2	
					26	go=2 ph31	
					27	d1 mc #0 to 2 F1PH(calph(ph1, +90), caldel(d0, +in0)) evit	
					29		Ψ.
							el

Figure 3.4: Check Parameters Dialog Box

The command **Check experiment parameters** displays the parameter dialog box. You may change any parameter. Parameters are stored, but the experiment is not started. The command **Start job** starts the NMR job.

3.4.5 Utilities

This menu contains several useful tools:

· Show pulse program

This command opens a new window and presents the current pulse program in a simple graphical form. More details may be found in the chapter *Pulse Program Display* [▶ 39].

Bloch module

Opens the Bloch simulator window, which is described in the chapter *Bloch Simulator* [> 25].

3.4.6 Options

The option **Upgrade Example Files** copies the latest version of example files to your private NMRSIM_SESSION directory (see *Examples* [> 77]).

NMRSim Settings opens a dialog where you can set several parameters. All parameters are also accessible from the "Check Parameters" dialogs (see *Go* [▶ 17]).

3.4.6.1 Options Dialog

NMRSir	m Options	man or other last		×		
Options	Options Output Processing					
⊗ Basics						
SF 500.133 Spektrometer proton frequency Relaxation Full Relaxation ▼ Relaxation mode						
				OK Cancel		

Figure 3.5: Options Dialog

Several parameters can be controlled from this submenu.

- Spectrometer frequency (SF).
- Relaxation here you can select the relaxation mode.
 - None

Relaxation effects are ignored.

Acquisition

Relaxation is only used to simulate the natural line widths (signal decay during FID).

- Full relaxation

Full relaxation is described in the section *Theoretical Background* [> 9]. This option significantly reduces the speed of calculations.

3.4.6.2 Processing Parameters

This part opens a page which lets you define the processing parameters. These parameters are saved to disk, i.e. you only need to execute the processing command (e.g. xfb) when processing the simulated spectrum.

Options Output Process	ing	
Basics	AQ direction	2nd dimension
SI	0	0
WDW	EM	▼ EM ▼
LB	3	3
SSB	3	3
GB	0	0
PH_mod	No	▼ No ▼
PHC0	90	90
PHC1	0	0

Figure 3.6: Processing Parameters Dialog

3.4.6.3 Output File

This table defines the default output file.

NMRSim 0	Options	And the second	
Options Ou	tput Pro	ocessing	
Output	data set		
parti	tion	C:/Bruker/TopSpin/examdata	
	name	nmrsim	
	expno	1	
			OK Cancel

The partition allows you to either select one of data partitions defined in the TopSpin data browser, or define your own path.

3.5 The "sample" - Spin System Definition

The spin system in definition is the "sample" for the simulation of NMR experiment. It is defined using a simple language, the definitions are saved in text files with the extension *.ham. The program constructs the Hamiltonian operator H_0 from the spin system definition file. So, in some cases we will refer to this file as the Hamiltonian definition.

Alternatively, you may select a chemical structure file ("*.mol") as your spin system definition. In this case NMRSim uses built-in NMR prediction to generate a temporary spin system definition for the sake of simulation.

The spin system may be edited using a built-in editor (**Edit/Spin System**). In the case, a structure file must be selected as you spin system, and the structure editor is used.

Figure 3.7: Editing the Spin System: The Molecular Structure Editor

Please refer to the structure editor documentation for further details ("Structure Analysis Tools", chapter "2D Structure Editor").

The built-in text editor uses the same user interface as any TopSpin text editor.

C:\Users\pavel.kessler\NMRSIM_SESSION\ham\dbpa.ham						
<u>F</u> ile <u>E</u> dit <u>S</u> earch						
1 ; NMR-Sim sample spin system	•					
2 ; \$Id: dbpa.ham,v 1.2 2004/12/07 13:12:16 pavel Exp \$						
4 ; Copyright (c) 1996 BRUKER Biospin GmbH						
5 ; D-76287 Rheinstetten, Germany						
6;						
7 ; All Rights Reserved						
9 ; Protons in di-brom propionic acid						
11 proton a 4.5 t= 0.5						
12 proton b 3.91 t= 0.5						
13 proton c 3.7 t= 0.5						
14 ;						
15 couple a c 4.402						
16 couple b a 11.222						
17 couple c b 9.998						
18						
	-					
1:1						

Figure 3.8: Editing the Spin system: The Text Editor

Chemical shifts of all nuclei in the spin system and nuclei multiplicities should be defined here. If the nuclei multiplicity is 1, it is possible to define its spin quantum number larger than 1/2. The nuclei chemical shifts are defined in ppm.

If necessary, the user can specify a different start value of the density matrix $\rho(0)$ than the thermodynamic equilibrium ρ_0 .

Chemical shift parameters in the spin system description can be specified as a variable. There are 32 such variables *var1-32*, their values can be changed from the same dialog box as the general set of experimental parameters. Each Hamiltonian variable is defined by two values:

- The start value HV1-32.
- The step *HS1-32*. The user can change their values from the pulse sequence: it is possible to increment only one parameter (*ihv1-32*) or increment all parameters by one command (**ihc**).

The full description of spin system definition commands may be found in the chapter *Spin System Definition Summary* [49] and *New Commands* [47].

3.6 Pulse Sequence Definition

The program uses standard Bruker pulse sequences for the definition of the experiment. However, there are some restrictions and enhancements.

The pulse sequence is syntactically checked before the start of an experiment. In the case of errors in the sequence, the user has the possibility of editing the file with a simple editor.

The editor can be invoked from the **Edit** menu, or directly from the error message box. After opening the editor from the error message box, the cursor placed on the line with the syntax error and the whole line is highlighted.

If the user starts the simulation using the command **Go** or **Check Parameters & Go**, they are asked for the value of all parameters (pulse and delay lengths, RF intensities...), which are used in the sequence.

3.7 Running the Simulation

After starting the simulation from the NMRSim menu a progress dialog is shown.

🍦 NI	MR-Sim Expert Window
File	Edit Wizard Go Utilities Options Help
Puls Spii	Simulation is running
Deli	Press "Cancel" to interrupt.
Offs	Experiment 4752 of 40000 Elapsed time :2.028
Dur	Cancel

The **Cancel** button interrupts the simulation, the program finishes the phase cycle and the data will be saved on the disk.

The information about the current state of the running experiment is displayed in two lines below the menu bar. The first line, the **Experiment counter** is incremented when the acquisition command finishes the last transient (scan). The limit displayed is identical to the TD1 variable. The bottom line of the progress dialog shows the elapsed time for the current calculation.

Simulated data are written to disk and immediately processed and displayed in TopSpin (we assume that the TopSpin option "Enable automatic data processing" is on).

This automatic cooperation between the simulation program and processing software combines them in a software-only based Bruker spectrometer.

4 Bloch Simulator

The command **Utilities/Bloch** module in the main NMRSim menu opens a new window with its own menu bar. You may also start the Bloch simulator as a stand-alone application using the following option:

nmrsim -bloch

Figure 4.1: Time evolution of a nuclear magnetization vector during an adiabatic pulse calculated for several offsets, is shown as a projection on the sphere

Additional parameters **-excit_profile** and **-time_evolution** may be used to immediately start the calculation of the excitation profile, or the time evolution of the nuclear magnetization.

The stand-alone module contains only the functionality described in this chapter.

The Bloch simulator module is designed to calculate and visualize the motion of the nuclear magnetization vector during an NMR experiment. The calculation of excitation profiles and waveform analysis brings important information about the behavior of pulses or pulse sequences in a real experiment.

The motion of the magnetization vector is described by the Bloch equation:

$$\overline{\mathbf{M}} = -\gamma(\overline{\mathbf{B}} \times \overline{\mathbf{M}})$$

. .

This is a classical equivalent of the Liouville equation for spin 1/2.

4.1 Toolbar

- D Selects the waveform for the calculation. The waveform is immediately shown on the screen.
- Saves the calculated information to disk. The displayed profile or waveform analysis will always be written. This information can be imported into other programs (it is a plain text file).
- Prints the current picture.

Copies the picture to the clipboard. Currently, only Windows supports this feature.

4.2 Calculate

The calculations are started from the corresponding icon in the Bloch module toolbar. It is also possible to start the calculation from the command line. The arguments *-excit_profile* and *-time_evolution*, combined with the *-bloch* argument, will start the calculation immediately.

Example:

nmrsim -config chirp.cfg -bloch -time_evolution

Starts the Bloch module, loads all settings from the configuration file *chirp.cfg* and calculates the time evolution of the magnetization.

4.2.1 Time Evolution

The toolbar button starts the time evolution simulation. It calculates the motion of the magnetization vector during the pulse for several radio frequency offsets and shows it on the sphere.

The command opens a dialog box, where the following experiment parameters can be defined:

Bloch Simulator

Check excitation profile parameters					
Experiment Parameters	Experiment Parameters				
Basics					
	MxO	0	initial magnetization		
	My0	0	initial magnetization		
	Mz0	0	initial magnetization		
 Pulses 					
	P0	500.000	µs pulse length		
Shapes					
	SP0	1200	Hz power for shaped pulse		
	SPOFF0	0	Hz offset frequency for shaped pulse		
	SPOAL0	0	phase alignment of freq. offset in s		
	N	400	number of calculated offsets		
	From	-4000	Hz first RF offset		
	То	4000	Hz end of the calculated offset range		
			<u>O</u> K	<u>C</u> ancel	

Figure 4.2: Parameters for the Calculation of the Time Evolution of the Magnetization Vector

MX(0),MY(0),MZ(0)

The initial value of the magnetization vector. The values are later so normalized, that the vector length is 1.

Example:

(0,10,0) is equivalent to (0,1,0),

The value (0,0,0) is identical to the equilibrium value (0,0,1).

The following is a list of all pulses, delays and variables that occur in the pulse program:

• SP 0

The radio frequency field intensity for the shaped pulse.

• N

Number of slices (offset values) which will be calculated. One slice represents the simulated experiment for one radio frequency offset.

From

The first value of radio frequency offset used for the calculation.

• To

End of calculated offset range.

The result of the calculation is shown using spherical coordinates. The scroll-bars on the bottom and on the side of the window may be used to adjust the angle of view. Double-clicking with the mouse on the sphere restores the original angle of view.

Figure 4.3: The Time Evolution of the Magnetization Vector Shown as a Projection on the Sphere

4.2.2 Excitation Profile

C:\Users	<pre>>\pavel.k</pre>	essler\NMRSIM_SESSI	ON\wave\gauss.s	hp			
vave Exc	citation p	rofile RF profile Wav	veform analysis 1 Waveforn	ime evolution			
100		heck excitation profile	e parameters				
90 80	Exp	eriment Parameters					
70							
60		Basics					
40			Mx0	0	initial magnetization		
30			My0	0	initial magnetization		
20			Mz0	0	initial magnetization		
10		Pulses					
350			P0	500.000	µs pulse length		
300		Shapes					
250			SP0	1200	Hz power for shaped pulse		
200			SPOFF0	0	Hz offset frequency for shaped pulse		
160			SPOAL0	0	phase alignment of freq. offset in s		
100			N	400	number of calculated offsets		
50			From	-4000	Hz first RF offset		
50			То	0	Hz end of the calculated offset range		

Figure 4.4: Parameters for the Excitation Profile Calculation

The parameters are the same as for the time sequence. The window layout changes and the calculated excitation profile is shown.

Figure 4.5: The Excitation Profile of the Gaussian 90 Degree Pulse

The buttons on the top of the window allow you to select the visible component.

A mouse can be used to zoom in a part of the displayed graphics, a double-click returns you back to the overview.

4.2.3 RF Field Profile

The RF filed profile command calculates the dependency of the magnetization on the RF filed intensity. You can define the pulse length, the RF offset, the starting value of used radio frequency filed, number of calculated points and the step:

Check RF profile parameters								
Exp	Experiment Parameters							
	Basics							
		MxO	0	initial magnetization				
		My0	0	initial magnetization				
		Mz0	0	initial magnetization				
	Pulses							
		P0	500.000	µs pulse length				
	Shapes							
		SPOFF0	0	Hz offset frequency for shaped pulse				
		SPOAL0	0	phase alignment of freq. offset in s				
		Ν	500	Number of RF field values				
		Start	0	Hz first RF field intensity				
		Step	10	Hz increment of RF field intensity				
					<u>O</u> K <u>C</u> ancel			

Figure 4.6: Parameters Used for the Calculation of Radio Frequency Profiles

The calculated profile is shown as a dependency of magnetization components on the RF field intensity.

Figure 4.7: Calculated Radio Frequency Profile.

The RF field for a 500 ms 90 degree pulse is about 1209 Hz.

4.2.4 Waveform Analysis

The command **Calculate/Waveform analysis** is used to analyze features of adiabatic pulses.

🖕 C:\Users\pavel.kessler\NMRSIM_SESSION\wave\chirp2.shp										
Wave	Excita	Excitation profile RF profile Waveform analysis Time evolution								
	Wavefom									
10	0	-								
8	• ſ	1 CI	hock waveform and	lucia paramotora	3		X			
7	70 Check waveform analysis parameters 80 Experiment Parameters									
e litude										
dwy 4	0	\odot	Pulses							
3	0			P0	9600.00	us pulse length				
1	0		Shanes							
	0		onapes							
35	0			SP0	1000	Hz power for shaped pulse				
30	0			SPOAL 0	0	phase alignment of frg_offset in sh				
25	0			0.0.20		Prises anguntan an 4 anatan an				
92 20	0									
أ 15	0									
10	0									
5	0									
	o 🛄									
							OK Cancel			

Figure 4.8: Parameters Used for the Waveform Analysis.

The program requires the pulse length, the RF intensity and the offset of the examined pulse and calculates following output:

+ Φ_{M} and Φ_{Bleff} are the angles between the magnetization or B_{1eff} vectors and the **xy** plane

The definition of the adiabatic condition requires that the magnetization vector M follows the trajectory of the effective radio frequency field vector B_{1eff} .

- · Quality factor
- Frequency sweep.

The following figure show the same pulse analyzed under two experimental conditions - on resonance and off resonance. The on resonance picture shows very good adiabatic condition, the off resonance case shows rising misalignment between the magnetization and RF field vectors - the adiabatic condition is no longer valid.

Figure 4.9: Excitation Profile

Bloch Simulator

Figure 4.10: On Resonance

Figure 4.11: Off Resonance, the Adiabatic Condition is Violated

4.3 Examples

There are two predefined configuration files which may be used to start your own work with this part of program: *bloch.cfg* and *chirp.cfg*.

Load the configuration saved in the *bloch.cfg* (use the main menu command **File**/Load **Experiment Setup...**) and calculate the excitation profile. The result is shown in the next figure. The picture was copied into the MS-Windows clipboard and pasted into this document

Figure 4.12: Excitation Profile of Shaped Gauss Pulse.

The time evolution calculation shows trajectories of the magnetization for a gaussian 90 degree pulse

4.4 Waveform Analysis using the TopSpin Shape Tool

The Shape Tool is the standard tool for the definition and manipulation of waveforms in TopSpin. You can start it using **stdisp** command on the TopSpin command line. The button **Start NMR-Sim** opens the Bloch simulator window and shows the excitation profile of your pulse.

You may now use all Bloch module functionality to investigate the features of your pulse.

Figure 4.13: TopSpin Shape Tool and Bloch Simulator Windows.

5 Pulse Program Display

The command **Utilities/Show pulse program** in the main NMRSim menu opens a new window, which shows the selected pulse program in a graphical form.

Figure 5.1: Window with the Pulse Program Scheme

The pulse programs are shown in a symbolic form, i.e. the lengths of pulses and delays do not represent the actual durations, but they use artificial proportions which make the pulse program more understandable.

The pulse program display may be also started as a stand-alone application using the command:

nmrsim -showp <pulse program name>

This command opens a pulse program display window without any simulation functions. Here is possible to start any number of copies of the stand-alone display (the NMRSim program may be started for each user only once).

An equivalent command is also available directly from TopSpin:

spdisp <pulse program name>

Displays the pulse program.

spdisp

Reads the pulse program name from the current data set.

You may also switch to the **Pulse Program** tab in the TopSpin data set window and press the **Graphical Pulse Program Display** button:

Start Process Analyse Publish View Manage Image: Construct of the start of the	Bruker TopSpin 3.5.b.71 pl 6 on NBRHE01-1BZY162 as Pave	Kessler 🗾 📃 💻 💭	
Plot Layout PDF F E-Mail Mobile 8 * 2 * 1 * 1 * 2 * 1 * 1	<u>S</u> tart <u>P</u> rocess A <u>n</u> alyse P <u>u</u> blish	View Manage 🕜 🚺	
Image: Structure Point Provide Construction of the structure Point Poin	Copy Srint → Piot La	iyout 🖂 PDF マ 📑 E-Mail 📥 Mobile マ	
Browser Last50 Groups CMCSe_REFERENCE CMCSe_REFERENCE Bit 1-5-Diamino-2-methylpentane Spectra ProcPars AcquPars Title PuiseProg Peaks Integrals Sample Structure Piol Fid Bit 1-0-Toilousidonyl-pyrrol-2-addeth Spectra ProcPars AcquPars Title PuiseProg Peaks Integrals Sample Structure Piol Fid Bit 1-0-Toilousidonyl-pyrrol-2-addeth File Integrals Sample Structure Piol Fid Bit 2-5-Lattdine File Integrals Sample Structure Piol Fid Bit 2-5-Lutdine File Integrals Sample Structure Piol Fid Bit 4-4-autydroxybenzophenone File Integrals Sample Structure Piol Fid Bit 4-4-autydroxybenzophenone File Integrals Sample Structure Piol Fid Bit 4-4-Butylamilne File Integrals Sample Structure Piol Fid Bit 4-2-zgpg30-cr13cpd_nik DMSO C1 File Integrals Sample Structure Piol Fid Bit 4-2-zgpg30-cr13cpd_nik DMSO C2 File Integrals Sample Structure Piol Fid Bit 4-2-zgpg30-cr13cpd_nik DMSO File File Integrals Sample Structure Piol Fid Bit 4-2-2gpg30-cr13cpd_nik DMSO File File Bit A-2-20-11550400 D1 File Bit A-2-205-11550450 D1 File Bit A-2-205-11550450 D1 File Bit A-2-205-11550450 D1 File Bit A-2-205-11550450 D1 Fi	Image: Weight of the state of the		
CMCSe_REFERENCE B 0 1.5-Diamino-2-methylpentane B 1.5-Diamino-2-methylpentane B 1.5-Diamino-2-methylpentane B 1.5-Diamino-2-methylpentane B 1.5-Diamino-2-methylpentane B 1.5-Diamino-2-methylpentane B 2.5-Lutdine B 2.5-Lutd	Browser Last50 Groups	:\Users\pavel.kessler\CMCse_REFERENCE	
θ = 1 + Adamantane- Hanol θ = 1 + Adamantane- Hanol θ = 1 + Adamantane- Hanol θ = 1 + Adamantane- Hanol θ = 2 - Diethoysethylamine 2 - Diethoysethylamine θ = 2 - Lutkine P = 1 + 2 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	CMCse_REFERENCE	rocPars AcquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid	
P = 2.4-dihydroxybenzophenone phase sem P = 4.4-dihydroxybenzophenone with dec P = 4.4-dihydroxybenzophenone yisth mult		↓ hsqcedetgpsp.3 ■ ■ ● ◯ ◯ ♥ ♥ ♥ ♥ ♥ Ⅲ ┞1.15 ₪ ┞1	
Billingha-Methyl-D-xyloside # SSUBTYPE IIII + Crp60.0.5,20.1 Crp60.0.5,20.1 F2 Crp60.0.5,20.1 IIII - Z -	20 m-1/W, marked by the complement of the	P1 ph1=0 P2 ph1=0 9.5µ 19µ 4µ 2µ P3 tisp18 ph1=0 P3 ph4=[0.0.] S00µ DV 8.7µ S00µ DV -1.0	4μ 200μ P16:2 1m

Figure 5.2: Pulse Program Display from TopSpin PulseProg Table

The buttons on the top of the pulse program window and the scroll bar on the bottom can be used to zoom and scroll the pulse program display.

You may also zoom using the mouse. The procedure is the same as zooming in TopSpin: press the left mouse button on the start of zoomed area and drag the mouse to the end. The expanded area is highlighted by two vertical cursor lines and middle thick line:

Figure 5.3: Releasing the left mouse button displays the selected part of pulse program.

• D Selects the pulse program for the calculation. An alternative selection method is to use drag & drop:

Figure 5.4: Pulse Program Display Window with the MS-Windows Explorer Window in Background.

Saves the calculated information to disk. The displayed profile or waveform analysis will always be written. This information can be imported into other programs (it is a plain text file).

Prints the current picture.

- Copies the picture to the clipboard. Currently, only Windows supports this feature.
- The display options.
- You may select channels visible in the pulse program display and toggle between the • external window and TopSpin internal frame for the pulse program display.

Display Control 5.1

The 2nd toolbar row controls the display features.

Switches the grid lines in the pulse program display. The grid lines between different channels connect synchronous points in the pulse program. This is an important feature for the visualization of "pulse trains". A pulse train is a parallel asynchronous execution of pulses and delays in two or more channels (see Pulse Trains, Virtual Channels [44]).

- P1
 Toggles the display of pulse and delay names.
- ∫ Parameter Values

Toggle the display of parameter values.

•]**B** Toggles the display of blocks in pulse programs. Blocks in pulse programs need to be annotated in the pulse program text. Typical example is the MLEV mixing sequence:

P1 ph1=[0;2 7 12µ	2.5276622 2.5276652	, 2]P7 2 0 546652	′ ph25 ହଞ୍ଚଛନ୍ଦେ2	= [2,0 . മള്ളള	.] P6 p 2 26 56662	o h24= 2වුණුණු	= [1,3 220636] P6 5221634	ph2 652	22=[3 P866	, 1] 2216365	27 ph2 226366	3=[0,2 226365	206466	ph22 i2p6j6	2 =[3 ,* 66206	1] 16621	P6 ph ଅଷ୍ଟଛର୍ଲେ2	1 24=[1 2060,051	1,3] m	
¹² PLW 1 PLV ZE 813 012 D0 2 200-11.6 F1	W 10								Go	_1 (1)											D1 2

• Toggling the display of blocks radically simplifies the display:

PL • Л‡ Pulse height

Controls how the pulse program display shows the pulse height.

Constant - all pulses have the same height.

Proportional to power level - the program uses following formula to calculate the pulse height.

```
if(powerLevel < 20 dB)
height = exp(-(powerLevel+6)*0.0266595);
else
height = 0.7598*exp(-(powerLevel+6)*0.0160944);
```

5.2 Pulse Program Text Editor

NMRSim couples the pulse program text editor to the pulse program display.

Figure 5.5: Pulse Program Editor.

The cursor position in the text window is highlighted on the pulse program display.

The graphical display is updated after each change of the pulse program text. It is possible, that the actual version contains a syntax error. In such a case the pulse program display shows the respective error message.

5.3 Pulse Program Visualization Details

5.3.1 Spectrometer Channels

The pulse programs use spectrometer conform labels F1..F8 and Grad for gradient channel. The switch F1 bottom defines the position of the F1 channel, either on the top, or on the bottom of display. Visible channels may be selected in the display options dialog.

5.3.2 Pulse Trains, Virtual Channels

A pulse train is a part of the pulse program, executing several pulses or delays simultaneously on one or more channels.

The pulse program *colocqf* contains the following line:

(d6):f1 (d0 p4 ph2):f2 (d0 p2 ph4):f1

There are two independent fragments which are executed on the same channel *F1*. In such a case NMRSim creates one additional *virtual* channel which allows the overlapping pulses and delays to be split visually.

Figure 5.6: Example of a Virtual Channel.

6 Pulse Programs

This section contains the information about Bruker pulse program language implementation in the NMRSim program. A complete description of Bruker pulse program syntax is included in the TopSpin documentation.

6.1 Pulse Program Commands Implemented in NMRSim

NMRSim implements all substantial commands necessary for pulse program execution. All trigger commands, and commands used to set spectrometer control words, are ignored. The pulse program display and the pulse program interpreter support only four radio frequency channels.

6.2 Decoupling

Only simple, ideal decoupling have been implemented. Any decoupler command (e.g. **cpd**, **cw**,) switches on the total decoupling of all heteronuclear interactions, whereby participate nuclei are assigned to decoupled channel: the heteronuclear coupling are set to zero.

The interactions are restored to the original state, when the decoupler is switched off (e.g. command **do**).

Example: An H-C-O group. Setting the decoupler to the O nucleus will decouple all couplings to the oxygen, but the C-H coupling remains intact.

6.3 New Commands

· ihc, dhc, rhc

Increments, decrements or resets all spin system variables *var1-32*. The increment or decrement step is defined by *HS1-32*.

• ihv1-32, dhv1-32,rhv1-32

Increments, decrements or resets one spin system variable var1-32 by HS1-32.

Example:

```
1 ze
2 p1
....
; this is not allowed !
Ihc
....
go= 2
; the end of acquisition loop
ihv1 ; increment var1 by HS1
lo to 1 times 11
```

Please note that commands manipulating the spin system variables may not be used in the acquisition loop (e.g. *ihc* in the example above).

The change of a spin system variable forces the recalculation of the spin system Hamiltonian and its eigenvalues. This means that the resonance frequencies in the spectrum may change! Such an operation does not make any sense in the acquisition loop. It will not crash the calculation, but you will get false results!

The change of a spin system variable after the **go=** command allows you to efficiently simulate the experiment dependency on the spin system parameters.

• sample

This command is used in the Bloch simulator for the sampling of magnetization values.

7 Spin System Definition Summary

In this chapter all the commands used for the definition of spin systems will be summarized. The spin system description has the same role in the simulation as the sample does for the real experiment.

The nuclear spin system is defined using a simple language. The definition is based on a plain text file and can be edited using any ASCII text editor such as Notepad. However, NMRSim implements a simple editor to do this.

7.1 Syntax

Each line contains at most one command. The lines starting with a semi-colon (;) are comments, the language does not discriminate between upper and lower case. The following predefined commands are available:

- Nucleus or isotope name
- Couple
- Weak
- Dipolar
- Qpolar
- Add
- Molecule
- Endmol

It is also possible to use the C language preprocessor macro definitions and conditional expressions.

7.1.1 Nucleus

The **nucleus** command has the following syntax with each parameter separated by one or more spaces (the fields in square brackets are optional):

nucleus [multiplicity *] label [spin number] [isotope] chemical shift [relax. time]

label

This is an arbitrary label denoting a particular nucleus. The maximum length is 31 characters.

isotope

This is a label denoting the isotope. The defined isotopes are listed in table the table below:

Symbol	Isotope	Name	Spin	g	
h1	proton	proton	1/2	1	
d2	deuterium	deuterium	1	0.15351	
li6	lithium 6	lithium6	1	0.14717	
li7	lithium 7	lithium7	3/2	0.38866	
b11	bor 11	bor11	3/2	0.32809	
c13	carbon 13	carbon	1/2	0.25144	
n14	nitrogen 14	nitrogen14			
n15	nitrogen 15	nitrogen	1	0.10133	
f19	fluorine 19	fluorine	1/2	0.94077	
si29	silicon 29	silicon	1/2	0.19867	
p31	phosphor 31	phosphor	1/2	0.40481	
y89	yttrium 89	yttrium			
rh103	rhodium 103	rhodium			
sn115	tin 115	sn115			
sn117	tin 117	sn117			
sn119	tin 119	sn119			
yb171	ytterbium 171	yb171ytterbiu m			
hg199	mercury 199	hg199mercury			

Table 7.1: Nuclear isotopes defined in the NMRSim program.

· chemical shift

This parameter shows the chemical shift in ppm units. The acquisition parameter SF is used to define the spectrometer frequency, which is used to convert the values in ppm to absolute frequency:

 $\omega = (offset+1)*SF*\gamma$

Instead of writing the number, you could use the spin system variable symbol *var1..32* or the pulse program constants cnst0..63.

The nuclear chemical shift can be also defined in absolute units - Hz. To do that, you must specify the unit Hz after the value of chemical shift.

Example:

```
proton p1 350.5 Hz
proton p22 6 ; 6 ppm
proton atom22 var1
proton d cnst11
```

• multiplicity

An integer number denoting the multiplicity of nucleus (spin equivalence). The maximum allowed value is 4, the default value is 1. This parameter is not allowed for nuclei with spin quantum numbers greater than 1/2.

spin number

Defines the spin quantum number of the nuclei. The following values are available:

j1/2, j1, j3/2, j2,

The default value is j1/2. For spin quantum numbers greater than 1/2 the multiplicity parameter is not allowed.

relaxation Time

This parameter defines the relaxation times for the nucleus. The relaxation times T1 and T2 are defined in seconds with following formats and values:

t= value

T1 = T2 = value

t1=value

T1 = T2 = value

t2=value

T1 = infinity, T2 = value

t1=value_1 t2=value_2

T1 = value_1, T2 = value_2

The default value is infinity (no relaxation). The relaxation time is used for the simulation of line widths (T2*) and for the relaxation of z magnetization (T1) when the option full relaxation is selected.

Example:

```
; 3 equivalent spin - 1/2 nuclei labeled "a"
; with a chemical shift of 3.6 ppm
nucleus 3*nucl 3.6
;
; nucleus b has spin 3/2, shift 8.3 ppm and t1 = t2 = 0.32 s
;
nucleus b j3/2 8.3 t= 0.32
; nucleus c is C13 , we define t1 and t2
nucleus c c13 83 t1= 0.32 t2=0.1
```

7.1.2 Isotope Labels

To simplify the work with different isotopes, you may omit the command **nucleus** and use the isotope name directly. The isotope names used for the spin system definition are listed in the isotope table.

The following nuclei definitions are equivalent

```
; 3 equivalent protons labeled "a"
; with a chemical shift of 3.6 ppm
nucleus 3*a 3.6 ; default isotope is h1
nucleus 3*a h1 3.6
proton 3*a 3.6
;
; nucleus b is carbon, shift 83 ppm
;
nucleus b c13 83
carbon b 83
```

```
; ; phosphor 10 ppm
;
nucleus c phosphor 10
phosphor 10
```

We prefer to use the isotope names described here, because the spin system definition is more readable and simpler. All examples in this manual will use the isotope names and not the command **nucleus**.

7.1.3 Couple

This is the command for the full scalar coupling between two nuclei using the operator $I_xS_x + L_yS_y + I_zS_z$. This should be used to define all homonuclear couplings (no X approximation).

• couple nucleus1 nucleus2 coupling

The parameters nucleus1 and nucleus2 are the spin labels, the parameter coupling is the scalar coupling constant in Hz, spin system variable or the pulse program constants *cnst0..63*.

Example:

```
couple a b 10.32
; spins a and b are coupled with J = 10.32 Hz
couple a b var1
couple a b cnst11
```

7.1.4 Weak

This command is used to define a weak scalar coupling (X approximation) between two nuclei I_zS_2 . It is normally used for heteronuclear J couplings or to simplify the AX type homonuclear spin systems.

• weak nucleus₁ nucleus₂ coupling

The parameters nucleus₁ and nucleus₂ are the spin labels, the parameter *coupling* is the scalar coupling constant in Hz, spin system variable or the pulse program constants *cnst0..63*.

Example:

```
; nuclei a and x are coupled with J = 56.2 Hz
weak a x 56.2
weak a x cnst31
weak a x var1
```

7.1.5 Dipolar

This command defines a dipolar coupling between two nuclei (only energy conserving parts of the dipolar Hamiltonian are implemented).

 $H_{DD} = J_D(I_z S_z - (I_x S_x + I_y S_y)/4)$

The dipolar coupling JD also includes the geometrical factor $(3\cos(\text{theta})^2 - 1)/r^3$.

dipolar nucleus₁ nucleus₂ coupling

The parameters nucleus, and nucleus, are the spin labels, the parameter coupling is the coupling constant $J_{\rm D}$ in Hz.

Example:

dipolar a b 100 dipolar a b cnst11

The dipolar coupling may be used to simulate the spectra of solid state monocrystals.

7.1.6 Qpolar

This command is used to define a quadrupolar coupling of one nucleus. The quadrupolar coupling is only allowed for nuclei with spin > 1/2.

· qpolar nucleus coupling

Example:

```
;the nucleus a has the quadrupolar coupling constant 100 Hz qpolar a 100 qpolar b var11
```

The quadrupolar coupling may be used to simulate the spectra of solid state *monocrystals*.

7.1.7 Molecule

This command starts the definition of a molecule. You can define several molecules in one spin system description file.

Every molecule must have a unique name, the labels of atoms in one molecule need to be unique. The label of atoms in different molecules may be the same (see the example below). The molecules are completely independent, NMRSim calculates the resulting signal as a weighted mixture of signals from single molecules. It is not possible to define an interaction between nuclei in different molecules.

molecule molecule_name weight

molecule_name is any string with no more than 31 characters.

weight Is a float number defining the relative concentration of this molecule in the mixture. It is also possible to use the spin system variable here. It is good practice to keep the weights of molecules close to 1. You may also use the spin system variable *var1..32* or the pulse program constants *cnst0..63*.

Instead of

```
molecule alpha 0.00001108
...
endmol
molecule alpha 0.00099
...
endmol
use
```

```
molecule alpha 1.108
...
endmol
molecule alpha 99
...
endmol
```

Example: Mixture of two CH_3 groups, one with C^{13} , 2nd with C^{12} . The weights are identical to the natural abundance of C^{13} isotope:

```
molecule alpha 1.108
```

proton 3*a 10
carbon x 130
weak a x 80
endmol
molecule beta 98.882
;
; the proton labeled a has nothing to do with the proton a from
; the molecule alpha
;
proton 3*a 10
endmol

The nuclei from different molecule definitions with the same label are different.

Omitting the **molecule** command in your spin system definition means that all nuclei in the spin system are part of one molecule. The following two definitions are equivalent:

```
,
molecule any_name 1.108
proton 3*a 10
carbon x 130
weak a x 80
endmol
and
; the same spin system definition without the molecule command
proton 3*a 10
carbon x 130
weak a x 80
```

The weight factor 1.108 does not play a role in this case.

7.1.8 Endmol

The command **endmol** finishes the definition of a molecule. Every **molecule** command must be followed by **endmol**.

7.1.9 Add

The spin system definition commands described above are used to define general nuclear spin systems in liquid. For special purposes you can use the command **add**. This command lets you create user-defined types of interaction between nuclei which you can use to create virtually any spin system Hamiltonian. The command multiplies a spin operator by a real constant and adds it to the specified inner matrix of the simulator:

· add matrix_name real_constant operator

Where *matrix_name* is the internal name of a spin system matrix. At present one can only use the symbol *ham* to specify the Hamiltonian matrix and *ro0* - to specify the initial density matrix.

operator is any operator expressed in product operator formalism, e.g.

```
operator notation
Ax = ax_
Ax*By = ax_by = by_ax
Ax*By*Cz = ax_by_cz = by_ax_cz = .....(any permutation is
allowed )
```

Example: Define a scalar coupling interaction between the nuclei *I* and *S* with coupling constant 3.5 Hz, i.e. $I_xS_x + I_yS_y + I_zS_z$.

```
proton i 10.3
proton s 9.2
add ham 3.5 ix_sx
add ham 3.5 iy_sy
add ham 3.5 iz_sz
```

You may use the **add** command and the C preprocessor macros to build your own interactions.

7.2 Initial Spin System State

The system sets the value of the initial density matrix $\rho(0)$ to be proportional to the thermodynamic equilibrium value $\rho(0) = \sum I_z^i$.

If you use the command **add ro0** in your spin system definition file, the program assumes, that you have set the value of $\rho(0)$ yourself and will not modify it.

This feature allows you to start the experiment from any state which may be far from equilibrium. A particular interesting feature is that you can use initial states that are very hard to create with a simple pulse (e.g. pure double quantum coherence I^+S^+ in a coupled system).

Example: The initial state of the spin system is $I_z + S_z + C_x$

add ro0 1 iz add ro0 1 sz add ro0 1 cx

7.3 Spin System Variables

To simplify the calculation of an experiment dependence on various spin-system parameters, the program offers a set of variables which can be used in the spin system definition. These variables are controlled from the pulse sequence.

Example:

```
; here the three chemical shifts and coupling constant are
written
; as variables which can be altered from one FID to the next
nucleus 3* a var1
nucleus b var2
nucleus c var3
couple a b var11
```

At the beginning of the pulse sequence the variables have their initial values set by the parameters HV1..32. When the pulse program encounters a command to increment a variable, the variable is incremented by the value HS1..32.

All spin system variables use Hz as the unit.

The command to increment the spin system variable recompiles the spin system Hamiltonian, and the program continues the experiment with the new settings. To use these commands it is necessary to observe the following rule:

The pulse program commands manipulating the spin system variables (dhc, rhc, ihc, ihv,..., see *Pulse Program Commands Implemented in NMRSim* [> 47]) should not be used inside the acquisition loop. The program will not detect such programming violations. Such command in the acquisition loop will probably not crash the calculation, but will lead to nonsensical results.

Example:

```
;
1 ze
2 d1
;
;
; spin system modified in the acquisition loop !!
; this is forbidden
ihv1
go = 2
;
; this is allowed , the modification is done outside the
acquisition loop
ihv2
loto 1 times td1
```

The spin system variables are also used in the calculation of shaped pulse excitation profiles.

7.4 Preprocessor Commands

Following C preprocessor commands may be used in the spin system definition:

```
#define
#ifdef
#if
#else
#endif
#include
```

Example:

;

```
; include your private definitions
#include <my definitions.ham>
; define some constants
#define SHIFT 1 10
#define SHIFT_2 15
#define COUPLE 1 10.3
#define noSOLVENT
molecule alpha 1
proton 2*a SHIFT 1
proton 3*b SHIFT 2
couple a b COUPLE 1
endmol
; the include file water.ham contains the definition of water
; it is placed in a subdirectory my library
#ifdef SOLVENT
#include <my library/water.ham>
#endif
```

The files included must be in the same directory as the spin system description files. The definition of symbols for the preprocessor is available in the NMRSim *Options Dialog* [> 19].

7.5 Spin System Limitations

The current NMRSim release supports up to 255 nuclei in the spin system definition. The nuclear labels are characters from the English alphabet, so you may use up to 26 different nuclei in one molecule. The nuclei from different molecule definitions with the same label are different.

But the limit of 26 interacting nuclei is not realistic. A group of 10 interacting nuclei with spin 1/2 without any symmetry is described by a 1024*1024 density matrix (about 8 MB). The NMRSim program needs at least 10 matrices for the simplest experiment. This means that the memory requirements for a simple experiment with 10 interacting nuclei, exceeds 80 MB.

So, the limits of the spin system you may use are determined by the computer used and not by the NMRSim program.

Let us compare this to a 10 nuclei spin system consisting of two interacting clusters with 5 nuclei. One matrix representing the operators in this case requires about 16 kB, this means that the whole experiment needs less than 200 kB.

The limit of 255 nuclei is a sensible one when defining large, complex mixtures of many simple molecules.

8 NMRSim Parameter Definition

Parameter definition is based on the standard Bruker parameter set. For the sake of simplicity and flexibility, some new features and new parameters have been added.

8.1 Durations

All the parameters specifying pulse durations use microseconds as default units, delay parameters use seconds as default. You can override this default by specifying the time units directly as a terminator for each entry:

- 10µ = 10 microseconds
- 13.5m = 13.5 milliseconds
- 5s = 5 seconds

Pulse length can be specified in two ways: as a time, or as a tilt angle. In the second case the actual pulse length is calculated from this angle and using the current radio frequency field strength parameter (*PLi*).

- 90d = 90 degree pulse
- $10\mu = 10$ microsecond pulse

8.2 Radio Frequency Field Intensities

The radio frequency field strengths are defined in Hz. The dB units used on the spectrometer are not available here. The dB is a relative unit and need an absolute value.

Example:

Specify the power level PL2 for the f2 channel 100 kHz and the channel is assigned to proton frequency. You will then get (approximately) a 2.5 μ s long 90 degree pulse. Assigning the same channel to carbon, you will have get a 90 degree pulse which is also 2.5 μ s long.

See also

Options Dialog [> 19]

8.3 Size Parameters

The parameters which specify the number of points or increments (TD, TD1,...) may be specified in multiples of 1024, you simply append the letter k: 1k, 8k, etc.

8.4 Error Checking

Most of the parameters are syntactically checked before closing the dialog box. When the program finds an error (e.g. a negative value, when a positive is expected), the bad parameter is highlighted and short error message is shown on the bottom of the dialog box.

8.5 Parameter Description

Parmod

This parameter defines the dimension of the experiment. Possible values are 1 .. 2 (NMRSim for Unix 1..4). The value of this parameter defines the dimension of the experiment and the output file name type (*fid* or *ser*). The function of the file increment command differs in 1D and nD modes. The experiment number is incremented and a new file is created in 1D mode. In nD mode, the program only shifts the position in the file for the next write command.

• F1

This parameter defines the nucleus assigned to the acquisition channel of the spectrometer. The basic frequency of the channel is calculated as SFO₁= SF* $\gamma_{OBS}/\gamma_{proton}$, where g_{OBS} is the gyromagnetic factor of the selected isotope.

• F2

This parameter defines the nucleus assigned to the channel F2 of the spectrometer. The basic frequency of the channel is calculated as SFO₂= SF* $\gamma_{DEC}/\gamma_{proton}$, where γ_{DEC} is the gyromagnetic factor of the selected isotope.

• F3

This parameter defines the nucleus assigned to the channel F3 of the spectrometer. The basic frequency of the channel is calculated as SFO₃= SF^{*} $\gamma_{DECB}/\gamma_{proton}$, where γ_{DECB} is the gyromagnetic factor of the selected isotope.

• SF

This variable defines the proton resonance frequency of your spectrometer.

OFS

This variable defines the offset between the receiver and transmitter frequencies in ppm.

• 01

The difference (in ppm) between the basic frequency of the F1 channel and the transmitter irradiation frequency.

• 02

The difference (in ppm) between the basic frequency of the F2 channel and the decoupler irradiation frequency.

• 03

The difference (in ppm) between the basic frequency of the F3 channel and the 2nd decoupler irradiation frequency.

AQ_mod

Acquisition mode. Possible values are *qf*, *qsim* or *qseq*. For more details refer to the pulse program manuals.

• TD

The total number of time domain data points to be acquired.

• TDn

The total number of time domain data points in higher dimensions for multidimensional experiments.

• NS

The number of pulse program transients (number of scans).

• DS

The number of pulse program transients without acquiring data (number of dummy scans). This parameter only has meaning for experiments with *full* relaxation. In other cases dummy scans are not executed and you are not prompted for this parameter.

• P0..63

The length of pulse p0-31 in the pulse sequence

PL0..31

The radio frequency field intensities in Hz.

• D0..63

The length of the free precession delay d0-31 in the pulse sequence.

IN0..31

The increment of delay D0-31 in the pulse sequence used by id0-31 commands. You may use the symbol *sw*. In this case the time increment is calculated from the formula 1/SW. This feature automatically guarantees the same spectrum width and calibration in both dimensions for *homonuclear* 2D experiments.

• FnMODE

The parameter *FnMODE* is used to define the expansion of the **mc** command in multidimensional pulse programs. It defines which quadrature detection scheme will be used in the indirect detection directions (e.g. F1 for 2D experiments). The parameter can be defined in the Frequencies dialog (see Parameters).

• L0..31

The loop limits used in pulse program loops.

• HV1..32

The start value of the spin system variable var1..32.

HS1..32

The step value for the spin system variables var1..32.

SP0..31

The radio frequency intensity used for the shaped pulse, the unit used is Hz.

• SPNAM0..31

The name of the file which contains the shape pulse definition.

• GPZ0..31

The gradient intensity modifier. The shape gradient intensity is multiplied by this factor. Possible values are -100 ... 100%.

8.6 Expressions in Pulse Programs

The AVANCE spectrometer series allow one to define their own pulses and delays. For example:

```
define delay MY_DELAY define pulse MY_PULSE
```

```
"MY_PULSE=p1*0.3333+3/4*p2+10u"
"MY_DELAY=d2+d3/2"
ze
.
.
MY_DELAY
MY_PULSE
.
.
```

Defines one pulse and one delay. Every pulse declared must be initialized in the pulse program. The **Check all parameters** dialog box shows all the actual values of all user defined delays and pulses.

The pulses used in any expression in the pulse program cannot be defined using the tiltangle value, exact time values must be used instead. The value of the actual radio frequency field is not known at setup time and therefore is not possible to convert the tilt angle to the time unit.

9 NMR Wizard

9.1 What is NMR-Wizard

The NMR-Wizard is a new tool which calculates the NMR spectrum (i.e. the time domain signal) without any user input. The user simply draws a chemical structure and selects which spectra should be calculated.

The whole complexity of NMR experiments (pulse programs, parameters, ...) is hidden. This makes the NMR-Wizard an ideal teaching tool for chemist, or other people who are interested on the results (NMR spectra), but do not need know the experimental details.

9.2 Using NMR-Wizard

NMRSim always starts in an "Expert mode". This is the classical user interface offering a lot of complex functionality. Use the Wizard menu to open the NMR Wizard window:

Figure 9.1: NMRSim Expert Window

NMRSim main window closes and you see now only the NMR-Wizard window:

Figure 9.2: NMRSim NMR Wizard Window

The user interface enhances the Bruker chemical structure editor component, which is used in several applications (TopSpin, CMC-se,...). Please refer to the structure editor documentation for further details ("Structure Analysis Tools", chapter "2D Structure Editor").

Software And Application Manuals								
Please	click on a manual title to open the document!							
APSY	Automated Projection Spectroscopy: Get N-dim. correlations via low-dimens							
SmartDriveNMR	The smart spectrometer for structure verification.							
NMR Thermometer	Introduction into NMR Thermometer.							
Acquisition & Processing Reference	s							
Acqu. Commands & Parameters	A description of all acquisition and acquisition related commands and parar							
Proc. Commands & Parameters	A description of all processing and analysis commands and parameters.							
Edprosol Manual	How to set up probe and solvent dependent parameters							
Edlock Guide	A description of how to setup solvent and lock dependent parameters.							
Pulse Program Catalogue, 1D/2D	A graphical presentation of the Bruker supplied pulse programs, 1D and 2E							
Pulse Program Catalogue, BIO	A graphical presentation of the Bruker supplied pulse programs, biomolecu							
NUS Parameters	A description of the parameter setup for Non Uniform Sampling							
Automation and Data Publishing								
ICON-NMR Automation Interface	A description of the lcon driven interface for routine spectroscopy, automat							
Data Publishing	A description of creating and manipulating plots and prints of NMR based d							
Analysis and Simulation								
Structure Analysis Tools	Describes structure analysis utilities such as Multiplet Analysis, Structure E							
NMR-SIM Experiment Simulator	A description of the simulation of NMR experiments (1D/2D/3D FIDs) based							
Daisy	A description of the simulation of NMR spectra based on chemical shifts an							
DNMR	A description of Dynamic NMR Line Shape Analysis to study slow nuclear e							
Structure Elucidation	Introduction into Small Molecule Structure Elucidation with TopSpin							
Multiplet Analysis Tutorial	How to use the first order multiplet analysis tools							
Quantitative NMR	How to use the quantitative NMR module							
Programming Manuals								
AU Programming	A description of AU macros and how to write AU Programs.							
•	4							
Close this dialog when a manual is oper	med <u>Multi-Doc Search</u> <u>Books</u> <u>Close</u>							

Figure 9.3: TopSpin Manuals Selector. The "Structure Analysis Tools" Document

Now, you can start to draw a structure (or load existing structure using the clipboard or drag & drop).

Select the spectra you need and press the **Update now** button. The simulation starts:

Figure 9.4: NMR-Sim Wizard during the Calculation

The simulated spectra are shown in TopSpin after the simulation finished:

Figure 9.5: A Simulated Spectra after the Simulation is Finished

Press the **Return to Expert Mode** button to close the wizard window and reopen the expert view. The chemical structure was automatically saved to disc and will be reloaded if you open the wizard for a second time.

The **Options** button allows you to set basic NMR parameters and the target dataset.

🍦 NMRSim	Options	Contraction of the local division of the loc		X
Options O	output			
Basics	5			
	SF	500.133	Spektrometer proton frequency	
	Relaxation	Full Relaxation 🔻	Relaxation mode	
				OK Cancel

Figure 9.6: NMRSim Options

Changing the target data set allows easy investigation of changes in spectra prompted through modification of the chemical structure.

Example: Compare spectra of the original structure and a different one, where the Chlorine atom was replaced by Fluorine.

Figure 9.7: Visible Signal Splitting though the Fluorine Coupling in H¹ and C¹³ Spectra

9.3 Where are the limits ?

As described in the section *Theoretical Background* [> 9], the complexity of NMR experiment simulation grows exponentially with the number of simulated nuclei. NMR Wizard tries to split the system of interacting atoms in a set of smaller isolated subsystems (e.g. neglects long range couplings,..). So, it is not simply possible to define a limit (e.g. molecular mass, number of atoms,...) where the simulation of spectra fails. This section demonstrates it on two molecules with comparable number of NMR relevant atoms.

Figure 9.8: 4-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]-2,6-piperidinedione

The first structure (see picture above) is too big to calculate the proton spectrum. You get following error message:

The C13 spectrum may be calculated, because the simulation uses only 2 spheres of neighborhood atoms to get correct splitting due to the CH coupling.

Next example is even larger structure (24 protons), however the calculation of proton spectra works fine.

NMR Wizard

Figure 9.9: Caryophyllene Oxide alias (4R)-4,12,12-Trimethyl-9-methylene-5oxatricyclo[8.2.0.04,6]dodecane

The calculation is very fast, only few seconds are necessary to get both proton and c13 spectra

Figure 9.10: Comparison of simulated and experimental C₁₃ spectra of Caryophyllene Oxide.

Calculation of COSY spectrum demonstrates the overall performance. Simulation of the COSY experiment on the Caryophyllene Oxide sample required only 30 seconds.

Figure 9.11: Caryophyllene Oxide, simulated COSY spectrum,
10 Gradient Spectroscopy

This chapter describes the basics of the gradient spectroscopy implementation in NMRSim. The chapter *Examples* [▶ 77] contains several examples of *Gradient Experiments* [▶ 99].

10.1 Gradients in Pulse Programs

The Bruker pulse program language has several different gradient control methods. The NMRSim implementation uses the *AVANCE shaped gradient syntax*.

p16:gp2

This command invokes a gradient pulse with a length P16 and a gradient shape of 2. The parameter *GPZ2* defines the relative amplitude (in %) of gradient number 2. It is possible to use values between -100 and 100.

10.2 Gradients in NMRSim

NMRSim does not use gradient shapes. Shaped gradients in NMR spectroscopy are used to suppress the experimental artifacts induced by the rapid static field change. The theoretical calculations in NMRSim do not require this. For spectroscopy, there is no difference between x, y or z gradients. So, NMRSim only implements the gradients along the z axis.

10.2.1 Numerical Simulation of Gradients

The gradient pulse applied to the sample introduces a rapid dephasing of the coherent magnetization. The global magnetization is not destroyed, but it is dephased. The measured NMR signal is a sum of all magnetization vectors. Using a second gradient pulse with inverted magnetic field reconstructs the original magnetization (neglecting the spin system evolution due to J-coupling).

It is not possible to use one density matrix to describe such systems. NMRSim divides the sample into a number of layers. Each layer is taken to be a system with homogenous fields, so it is possible to use the density matrix formalism. The evolution of the spin system in this layer is described by the Liouville equation. The NMR signal is then calculated as a sum over all layers. This approach allows for the simulation of gradient experiments the main goal of NMRSim program: *Flexibility*.

This approach is a challenge for the program performance. The Liouville equation must be solved separately for each layer in the sample. This means, that the simulation will be much, much slower compared to the simulation of "classical" experiments without gradients. A trade-off between program speed and the output quality should be found. NMRSim implements a lot of optimizations to achieve acceptable performance. The number of layers used for the simulation is defined on-the-fly using an *adaptive algorithm* which guarantees good quality of results and acceptable speed. In fact, the calculation of sample gradient experiments presented in this manual takes only a few seconds on modern hardware.

The current implementation of gradient experiments neglects any *diffusion effects* and the *full relaxation mode* is not available for gradient experiments.

10.3 Examples of Gradient Experiments

This section presents some principles of gradient spectroscopy.

10.3.1 Decay of Magnetization Under the Influence of Gradients

The dephasing (decay) of the magnetization under the influence of a homogeneous static field gradient may be described using the following formula:

The figure below shows a simulated decay. The vertical axis is proportional to the pulse length, the full vertical scale is about 4 ms. The absolute value of the resulting display is shown. The projection on the side of the spectrum shows, that the calculated decay is in a form very near to the theoretical formula above.

Figure 10.1: The Magnetization Decay During a Gradient Pulse.

10.3.2 COSY Experiment

The gradient COSY demonstrates the ability to select the coherence to be observed using gradients.

The classical COSY pulse program uses phase cycling to achieve the coherence selection. Thus, at least two transients (scans) are necessary to get a two dimensional spectrum.

Figure 10.2: The cosygp Pulse Program.

The gradient pulse program selects the coherence using a static field gradient. Only one transient is required. The figure below demonstrates the coherence selection. The gradient ratio 10:10 selects the "normal" +1 coherence. Inverting the sign of the second gradient selects the -1 coherence and the sign of the indirect detection axis changes.

Figure 10.3: Gradient COSY Spectrum, Gradient Ratio 10:10 and 10:-10.

The suppression of the unwanted coherence achieved in this case is better than 1:1000. The configuration of this experiment is stored in the file *gradient_cosy.cfg*.

11 Examples

This chapter describes several example experiments.

Start the NMRSim program typing **nmrsim** on the TopSpin command line.

After the first start NMRSim copies all the example files into the user directory: \$HOME/ NMRSIM_SESSION.

The command **Options/Update example files** in the NMRSim main menu bar may be used to reload a full set of the original example files. This should be invoked after each installation of new NMRSim version.

In your user directory you will find the configuration files, which will assist you in starting these examples. Load the specified settings into the simulator using menu command **File**/**Experiment setup/Load from file**. This step properly defines all parameters for your experiment. In this step only the experiment parameters are defined, it does not create the spectra.

To start the experiment, execute the main menu command **Go/Run** or **Go/Check parameters & Go**. This will start the simulation and the time domain signal will be generated. Use TopSpin to process the calculated spectra.

demo1d .cfg	1d spectrum of ethanol.
selco .cfg	Selective COSY of di-brom propionic acid.
select .cfg	A selective excitation experiment in a strongly coupled system (di-brom propionic acid).
dept.cfg	Dept experiment on a sample CH-CH2-CH3 spin system.
hohaha.cfg	Selective excitation and magnetization transfer using the MLEV mixing sequence.
invreco.cfg	Simple inversion recovery experiment.
profile.cfg	Excitation profile.
jres.cfg	J-resolved experiment on di-brom propionic acid spin system.
cosytp.cfgcosydtp.cfg, cosytftp.cfg	COSY experiments on dbpa.
cosyph.cfg	Cosyph.cfg uses the new mc command for F1 phase sensitivity.
hetcor.cfg	Heteronuclear correlation experiment on a sample C-H spin system.
invitp.cfg	Inverse heteronuclear experiment.
inv_1d.cfg	1D H-X correlation via heteronuclear zero and double quantum coherence.

The NMRSim installation contains the following example configuration files:

Table 11.1: Example Configuration Files

inv_1d.cfg	1D H-X correlation via heteronuclear zero and double quantum coherence using gradients.
gradient_cosy.cfg	Gradient COSY experiment.
gardient_calibrate.cfg	Simulates the magnetization decay in the gradient pulse as a function of time.
watergate.cfg	Water signal suppression using binomial pulse sequence and gradients.
Bloch Module	
bloch.cfg	Investigation of a gaussian pulse.
chirp.cfg	Investigation of a phase modulated chirp inverse pulse.

Table 11.2: Example Gradient Spectroscopy Configuration Files

These example files may also be used as a template for the definition of your own experiments. You only need to change necessary parameters and save the configuration on the disk under a new name.

The spin system used in all the examples is small, so you will get the results in very short time on any computer. It takes just a matter of seconds to calculate most of the 2D experiments described here.

The following section describes details of selected example experiments. Every part contains a listing of the experiment configuration file. To reduce the storage requirements the files contain only parameters which are non-zero or different from the Bruker default settings.

The negative values of pulse lengths in configuration files are in fact the tilt angles. The program uses this coding for the sake of simplicity.

11.1 How to Setup a New Experiment

• Load the existing experiment configuration.

Load an existing experiment configuration that is similar to the new experiment you want to calculate. Select a new spin system or pulse program and modify the existing parameters.

See also

■ NMR Wizard [▶ 63]

11.2 The First 1D Experiment

The configuration file *demo1d.cfg* contains the description of a simple one dimensional experiment. The spin system description file is *ethanol.ham*.

```
; Protons in ethanol
;
; Bruegel, Handbook of NMR Spectral parameters,
; vol 2, p 316
;
proton 3*a 1.19 t=1
proton 2*b 3.66 t=1
proton c 5.27 t=1
couple a b 6.9
couple b c 4.76
```

The file *ethanol2.ham* contains the protons, and the protons and carbons, from ethanol molecule respectively.

The file *ethanol2.ham* uses the molecule definition to create the natural *mixture* of molecules with c13 and c12 isotopes. The c12 atoms are omitted, because the c12 nucleus does not have any magnetic moment.

```
;
; Carbons and protons in ethanol
; Bruegel, Handbook of NMR Spectral parameters,
; vol 2, p 316
molecule alpha 0.98
proton 3*a 1.19
proton 2*b 3.66
proton c 5.27
couple a b 6.9
couple b c 4.76
endmol
; follow two molecules with carbons
molecule beta 0.01
proton 3*a 1.19
proton 2*b 3.66
proton c 5.27
carbon e 56.30
couple a b 6.9
couple b c 4.76
;
; H/C spin coupling in Hz
;
weak a e 100
endmol
molecule gamma 0.01
proton 3*a 1.19
proton 2*b 3.66
proton c 5.27
carbon f 16.95
;
couple a b 6.9
couple b c 4.76
;
; H/C spin coupling in Hz
;
weak b f 100
endmol
```

The resulting 1D spectrum:

Figure 11.1: The Proton Spectrum of Ethanol at 200 MHz, Experiment Definition File demo1d.cfg.

The inset in the figure above shows the C13 satellites (vertical scale with 8 times magnification).

11.3 Excitation Profiles of Shaped Pulses

The **ihc** command allows for the simulation of rather complicated experiments, you can study the dependence of NMR experiments on various spin system parameters.

The results of such an experiment is shown part "c" "Excitation profile of a gaussian pulse on a two spin system" in the figure below. Chemical shift of one nucleus varied in the range \pm 700 Hz, the chemical shift of the second nucleus was fixed on 1000 Hz. A comparison to the excitation profile of isolated nucleus ("b" in the figure below) shows, that the excitation profile is not affected by the spin-spin interaction.

[NMR-Sim-Experiment]
sequence= \$root\$\usr\demo\shape.seq
hamiltonian=a.ham
SF=200
p5=5000
11=81
sh1=gauss.shp
Relaxation=1
TD=8192
NS=4
HL1=100000
HL2=200

SW=8.192
hv1=-800
hs1=200

Table 11.3: Configuration File profile.cfg

Please note, that the values of spin system variables used for chemical shift definition are interpreted as frequency in Hz!

The use of the flip angle (e.g. 90d) instead the pulse duration is available only for pulses without phase modulation!

Figure 11.2: The Comparison of Excitation Profiles of Three Different Selective Pulses.

The length of all pulses is 5 ms, tilt angle 90 degree (effective field amplitude 50 Hz). The configuration file name is *profile.cfg*.

11.4 Selective COSY

This example demonstrates the practical use of a shaped pulse for the selective excitation.

Figure 11.3: Schema of 1D Selective COSY Experiment.

The comparison of the experimental and simulated spectra shows a very good agreement between the theoretical and experimental results. The pulse program being used is the standard Bruker pulse program *selco*.

```
;selco
  ;1D COSY using selective excitation with a shaped pulse
  ;C.J. Bauer, R. Freeman, T. Frenkiel, J. Keeler & A.J. Shaka,
  ; J. Magn. Reson. 58, 442 (1984)
  ;H. Kessler, H. Oschkinat, C. Griesinger & W. Bermel,
  ; J. Magn. Reson. 70, 106 (1986)
  1 ze
  2 d1 tlo
  p11:tp1 ph1
  d13
  d14 thi
  p1 ph2
  go=2 ph31
  wr #0
  exit
  ph1=(360) 90 270 270 90 180 0 0 180
  ph2=0 2 0 2 1 3 1 3
  ph31=0 2 2 0 1 3 3 1
  ;hl1: ecoupler high power level
  ;tp1: power level for shaped pulse tp1 in tlo mode
  ;p1 : 90 degree transmitter high power pulse
  ;p11: 90 degree transmitter shaped pulse
  ;d1 : relaxation delay; 1-5 * T1
  ;d13: short delay (e.g. to compensate delay line) [3 usec]
  ;d14: delay for evolution after shaped pulse: (p11)/2 + d14 \sim 1/
(2J)
  ;NS: 8 * n
  ;DS: 4
  ;x : phase difference between thi and tlo output
  ; choose pl1 according to desired selectivity
  ;the flip-angle is determined by the amplitude
  ; the use of an external attenuator might be necessary
  ;01 has to be on resonance on the multiplet to be excited
```

[NMR-Sim-Experiment]
sequence=selco
hamiltonian=\$root\$\usr\demo\dbpa.ham
p11=80000
d1=0.003691
sh1=gauss.shp
Relaxation=1
TD=4096
NS=8
HL1=100000
SF=300.13
SFO1=4.1

SW=1.2

Table 11.4: Experiment definition selco.cfg

Figure 11.4: Selective COSY Experiment.

The length of the Gaussian shaped pulse was 80 ms, the D13 delay \approx 3.7 ms. Note the magnified parts of spectrum which shows a small artifact, probably generated due the strong J-coupling in the spin system. The same artifact is also present in the real experiment.

11.5 1D HOHAHA with Z-filter

Figure 11.5: Scheme of 1D HOHAHA Z-filtered Experiment

One of the most exciting areas in the NMR spectroscopy are the homonuclear Hartman Hahn experiments, which helps to elucidate the molecular structure. The next example shows the 1D version of such an experiment, the configuration file is *hohaha.cfg*.

This experiment shows the efficiency of the pulse program compilation in NMRSim. The first scan needs the most run time. The shaped pulse for the selective excitation and the magnetization transfer sequence are compiled and saved in memory. Following scans use the previously compiled segments and execute much faster - the number of calculated pulses is reduced by a factor \sim 200.

The result of the short experiment with only one delay, is that the z-filter contains a large number of artifacts ("a" in the figure below).

The "full" experiment with 8 delays in the z-filter exhibits the significant suppression of artifacts ("b" in the figure below). The pulse program requires the delay table *hoha_z.ld*.

The delays in the z-filter (hoha_z.ld) are calculated for the example ABC spin system and for the spectrometer frequency SF = 200 MHz. To use a different spin system or frequency, you should create a new delay list file. The delay values τ are calculated using formula:

Where $\omega_i,~\omega_j$ are the chemical shifts of the nuclei and $\alpha_{ij}\pi$ is 0 or 1. Every possible combination of 0 and 1 in this formula defines one delay time $t_{\pi}.$

11.6 **DEPT Experiment**

F2

Figure 11.6: The Scheme of DEPT Pulse Sequence without Decoupling

This example presents a simple heteronuclear experiment. The spin system used is an artificial CH3-CH2-CH molecule. The picture demonstrates the dependency of C13 spectra on the number of coupled protons and the tilt angle of the P0 pulse in the DEPT pulse sequence:

```
;deptnd
;dept polarization transfer
;no decoupling during acquisition
1 ze
2 d1 do s1
3 (p3 ph1):d
d2
(p4 ph2):d (p1 ph4 d2)
(p0 ph3):d (p2 ph5)
d2
go=2 ph31
wr #0
d2 do
exit
ph1=0
ph2=0 2 1 3
ph3=1 1 1 1 3 3 3 3
ph4=0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
ph5=0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3
ph31=1 1 3 3 3 3 1 1 2 2 0 0 0 0 2 2
3 3 1 1 1 1 3 3 0 0 2 2 2 2 0 0
;S1: ecoupler high power level
;p0 : 45, 90 or 135 degree decoupler high power pulse
; 45 degree - all positive
; 90 degree - XH only
; 135 degree - XH, XH3 positive, XH2 negative
;p1 : 90 degree transmitter high power pulse
;p2 : 180 degree transmitter high power pulse
;p3 : 90 degree decoupler high power pulse
;p4 : 180 degree decoupler high power pulse
;d1 : relaxation delay; 1-5 * T1
;d2 : 1/(2J(XH))
;NS: 4 * n
;DS: 4 or 8
```

The evolution delay D2 has been matched to the CH coupling 100 Hz. The phase distortions in the resulting spectra results from the deviations of CH2 and CH3 coupling constants from this value.

You may try further experiments using the same setup and changing only the pulse program. The pulse program *dept* contains the same experiment, but with decoupling during the acquisition. Another possibility is the pulse program *ineptnd*. The evolution delays for the inept experiment are already set.

[NMR-Sim-Experiment]
sequence=deptn
hamiltonian=chmodel.ham
p0=-135
d2=0.005
Relaxation=1
TD=16384
NS=4
HL1=100000
HL2=200
SF=200
SFO1=50
SW=40

Table 11.5: Experiment Definition File dept.cfg

Figure 11.7: Comparison of Simulated C13 DEPT Spectra for Three Different Leading Pulses P0.

11.7 J Resolved Experiment

This simple 2D experiment shows the ability of NMRSim to calculate 2nd order spectra. The comparison of the same J-resolved spectra on 300 MHz and 600 MHz shows the significant reduction of strong coupling artifacts for the higher resonance frequency. Both spectra in the figure were processed using the *qsine* window function with SSB= 3.

TD=1024
NS=4
HL1=100000
SF=300.13
SFO1=4.1

SW=1.2

Table 11.6: Experiment Definition jres.cfg

Figure 11.8: The 300 MHz Spectrum Shown as a Stacked Plot.

The intensity of 2nd order artifacts is remarkable.

Examples

Figure 11.9: The Comparison of J-resolved Experiment for two Different Frequencies.

11.8 Phase Sensitive DQ COSY Experiment

The experiment definition is stored in cosydtp.cfg.

[NMR-Sim-Experiment]

sequence=cosydftp

hamiltonian=dbpa.ham

in0=sw
Relaxation=1
TD=1024
NS=4
HL1=100000
SF=300.13
SF01=4.1
SW=1.2

Table 11.7: Experiment Definition cosydtp.cfg

Figure 11.10: Double Quantum Filtered COSY Pulse Program Scheme.

Figure 11.11: The DQ-COSY Spectrum of Di-brom Propionic Acid at 300 MHz.

11.9 **Inversion Recovery Experiment**

The configuration file *invreco.cfg* contains a simple inversion recovery experiment setup.

Figure 11.12: The invreco Pulse Program.

The picture shows the relaxation procedure on 10 1D spectra. It may also be possible to present the experiment in 2D form, just change the experiment type from 1D to 2D. Transforming the acquisition dimension f2, you will get an equivalent picture.

[NMR-Sim-Experiment]
sequence=\$root\$\usr\demo\invreco.seq
hamiltonian=\$root\$\usr\demo\abc.ham
p1=-90
p2=-180
d1=0.0
d2=10
in1=0.03
11=1
Relaxation=2
TD=16304
NS=1
HL1=100000
SF=200
AQ_mod=1
SW=12

Figure 11.13: Inversion Recovery Experiment.

11.10 Heteronuclear Correlation

Figure 11.14: The hxco Pulse Program.

This example presents a simple heteronuclear correlation experiment. The sample CH3-CH2-CH spin system (*chmodel.ham*) was used. The result of the simulation is shown below:

Figure 11.15: Result of the Heteronuclear Correlation Experiment.

11.11 Inverse Experiment

The configuration file *invitp.cfg* contains a setup for a sample inverse experiment.

Figure 11.16: invitp Pulse Program - Inverse Correlation Using the inept Sequence.

The double inept sequence is used for the magnetization transfer.

The sample CH3-CH2-CH spin system was used. The figure below shows the result:

1D Heteronuclear Correlation 11.12

The 1D inverse heteronuclear correlation experiment may be used to detect the protons attached to selected X nuclei.

Two versions of this experiment exist: The classical one uses a phase cycle to select attached nuclei. The second one uses magnetic field gradient for the coherence selection.

Figure 11.17: Comparison of the "Classical" and Gradient Versions of the Inverse 1D Correlation Experiment.

The experiment parameters are stored in the configuration file *inv_1d.cfg*. Ethanol (*ethanol2.ham*) was used as a model spin system.

The gradient version should use the gradient intensity ratio 50:30:40. This ratio is valid for the H-C13 spin systems. Other X nuclei will require different values.

Examples

The results are shown in the next figure. The signals of protons without the C13 coupling are suppressed and we see only the C13 coupled nuclei. A 1D spectrum of the molecule is shown for comparison.

Figure 11.18: Comparison of the 1D Inversion Experiment Using a Traditional Pulse Program with Phase Cycling to Gradient Version.

No decoupling was used during the acquisition. The gradient version uses only one scan, so the signal intensities are lower.

11.13 Gradient Experiments

The details of the implementation of gradient spectroscopy are described in the chapter *Gradient Spectroscopy* [> 73].

11.13.1 Gradient COSY Experiment

The basic gradient experiment is the *cosygp* pulse program. Here we use the *cosygpmfph* pulse program: multiple quantum filtered COSY using gradients.

Figure 11.19: COSYGPMFPH Pulse Program.

This pulse program may use different gradient intensity ratios for the coherence selection. Ratio 10:20 gives a double-quantum filtered experiment, ratio 10:30 gives a triple quantum spectrum. The experiment is phase sensitive using the TPPI phase modulation, only one transient (scan) is required.

Please, note the required phase correction: it is always a part of the pulse program documentation.

Figure 11.20: Required phase correction as a comment in pulse program text

Figure 11.21: Triple-Quantum Filtered Gradient COSY Spectrum of a Di-brom-propionic Acid.

11.13.2 Watergate

The watergate pulse program is used for the efficient suppression of solvent signals. The pulse sequence contains a "sandwich" of two gradients separated by a selective inversion pulse. The version presented here uses a popular binomial sequence of hard pulses as the inversion pulse.

The following pulse program calculates the excitation profile of the watergate sequence. It uses the NMRSim spin system manipulation commands to imitate the shift of the spectrometer carrier frequency which is necessary to measure such a dependence. The name of the pulse program is *watergate.seq*, the configuration file is *watergate.cfg*.

Figure 11.22: Watergate Pulse Program.

The experiment requires 4 transients (scans), the gradient pulse length was 2 ms, the gradient power GPZ1 10%.

The delay D2 is an important parameter defining the periodicity of the binomial inversion pulse. The value 0.3 μ s used here, guaranties that the next minimum lies always outside of the spectrum bandwidth.

11.14 Phase Sensitive COSY Experiment Using the mc Command

The configuration file *cosyph.cfg* contains a setup for a sample experiment using the cosyph pulse program.

The **mc** command was introduced to the Bruker pulse programming language to simplify the usage of different techniques for the phase sensitive detection in the indirect detection directions. The next table compares the new *cosyph* sequence and the old *cosytp* pulse program.

```
COSYPH
                              COSYTP
1 ze
                              1 ze
                              2 d1
2 d1
3 p1 ph1
                              3 p1 ph1
d0
                              d0
                              p0 ph2
p0 ph2
go=2 ph31
                              go=2 ph31
d1 mc #0 to 2 F1PH(ip1,
                              d1 wr #0 if #0 id0 ip1 zd
id0) exit
                              lo to 3 times td1
                              exit
```

Table 11.8: Comparison of COSYPH and COSY Sequences

You see, that the original handling necessary for the TPPI quadrature detection was replaced with much simpler syntax.

The pulse programs containing the **mc** command are expanded in the pulse programming language compiler to a new pulse program, which is similar to the original cosytp.

The way, in which the pulse programs are expanded is defined using the *FnMODE* parameter. These parameters (for each indirect detection dimension one) may be set in the **Check Experiment Parameters** dialog:

The cosyph pulse program contains a macro F1PH. This means, that this pulse program may use any phase sensitive scheme (tppi, states, statest-tppi). The non-phase sensitive schemes and the echo- anti echo require other macros. Details are discussed in the TopSpin acquisition manual.

12 Contact

Manufacturer

Bruker BioSpin GmbH Rudolf-Plank-Str. 23 D-76275 Ettlingen Germany

E-Mail: nmr-support@bruker.com http://www.bruker.com WEEE DE43181702

Bruker BioSpin Hotlines

Contact our Bruker BioSpin service centers.

Bruker BioSpin provides dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.

Please select the service center or hotline you wish to contact from our list available at:

https://www.bruker.com/service/information-communication/helpdesk.html

List of Figures

Figure 3.1:	File Menu	15
Figure 3.2:	Edit Menu	16
Figure 3.3:	NMRSIm Go Menu	18
Figure 3.4:	Check Parameters Dialog Box	18
Figure 3.5:	Options Dialog	19
Figure 3.6:	Processing Parameters Dialog	20
Figure 3.7:	Editing the Spin System: The Molecular Structure Editor	21
Figure 3.8:	Editing the Spin system: The Text Editor	22
Figure 4.1:	Time evolution of a nuclear magnetization vector during an adiabatic pulse calculated for several offsets, is shown as a projection on the sphere	25
Figure 4.2:	Parameters for the Calculation of the Time Evolution of the Magnetization Vector	27
Figure 4.3:	The Time Evolution of the Magnetization Vector Shown as a Projection on the Sphere.	28
Figure 4.4:	Parameters for the Excitation Profile Calculation	29
Figure 4.5:	The Excitation Profile of the Gaussian 90 Degree Pulse	30
Figure 4.6:	Parameters Used for the Calculation of Radio Frequency Profiles	31
Figure 4.7:	Calculated Radio Frequency Profile.	32
Figure 4.8:	Parameters Used for the Waveform Analysis	33
Figure 4.9:	Excitation Profile	34
Figure 4.10:	On Resonance	35
Figure 4.11:	Off Resonance, the Adiabatic Condition is Violated	36
Figure 4.12:	Excitation Profile of Shaped Gauss Pulse.	37
Figure 4.13:	TopSpin Shape Tool and Bloch Simulator Windows.	38
Figure 5.1:	Window with the Pulse Program Scheme	39
Figure 5.2:	Pulse Program Display from TopSpin PulseProg Table	40
Figure 5.3:	Releasing the left mouse button displays the selected part of pulse program	41
Figure 5.4:	Pulse Program Display Window with the MS-Windows Explorer Window in Background	41
Figure 5.5:	Pulse Program Editor	44
Figure 5.6:	Example of a Virtual Channel.	45
Figure 9.1:	NMRSim Expert Window	63
Figure 9.2:	NMRSim NMR Wizard Window	63
Figure 9.3:	TopSpin Manuals Selector. The "Structure Analysis Tools" Document	64
Figure 9.4:	NMR-Sim Wizard during the Calculation	66
Figure 9.5:	A Simulated Spectra after the Simulation is Finished	67
Figure 9.6:	NMRSim Options	68
Figure 9.7:	Visible Signal Splitting though the Fluorine Coupling in H ¹ and C ¹³ Spectra	69
Figure 9.8:	4-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]-2,6-piperidinedione	70
Figure 9.9:	Caryophyllene Oxide alias (4R)-4,12,12-Trimethyl-9-methylene-5- oxatricyclo[8.2.0.04,6]dodecane	71
Figure 9.10:	Comparison of simulated and experimental C ₁₃ spectra of Caryophyllene Oxide	71

Figure 9.11:	Caryophyllene Oxide, simulated COSY spectrum,	72
Figure 10.1:	The Magnetization Decay During a Gradient Pulse	74
Figure 10.2:	The cosygp Pulse Program.	75
Figure 10.3:	Gradient COSY Spectrum, Gradient Ratio 10:10 and 10:-10.	76
Figure 11.1:	The Proton Spectrum of Ethanol at 200 MHz, Experiment Definition File demo1d.cfg	80
Figure 11.2:	The Comparison of Excitation Profiles of Three Different Selective Pulses.	81
Figure 11.3:	Schema of 1D Selective COSY Experiment	81
Figure 11.4:	Selective COSY Experiment	83
Figure 11.5:	Scheme of 1D HOHAHA Z-filtered Experiment	84
Figure 11.6:	The Scheme of DEPT Pulse Sequence without Decoupling	86
Figure 11.7:	Comparison of Simulated C13 DEPT Spectra for Three Different Leading Pulses P0	88
Figure 11.8:	The 300 MHz Spectrum Shown as a Stacked Plot	90
Figure 11.9:	The Comparison of J-resolved Experiment for two Different Frequencies.	91
Figure 11.10:	Double Quantum Filtered COSY Pulse Program Scheme.	92
Figure 11.11:	The DQ-COSY Spectrum of Di-brom Propionic Acid at 300 MHz.	93
Figure 11.12:	The invreco Pulse Program	94
Figure 11.13:	Inversion Recovery Experiment	95
Figure 11.14:	The hxco Pulse Program	95
Figure 11.15:	Result of the Heteronuclear Correlation Experiment.	96
Figure 11.16:	invitp Pulse Program - Inverse Correlation Using the inept Sequence	96
Figure 11.17:	Comparison of the "Classical" and Gradient Versions of the Inverse 1D Correlation Experiment.	98
Figure 11.18:	Comparison of the 1D Inversion Experiment Using a Traditional Pulse Program with Phase Cycling to Gradient Version.	99
Figure 11.19:	COSYGPMFPH Pulse Program.	100
Figure 11.20:	Required phase correction as a comment in pulse program text	100
Figure 11.21:	Triple-Quantum Filtered Gradient COSY Spectrum of a Di-brom-propionic Acid	101
Figure 11.22:	Watergate Pulse Program.	101
List of Tables

Table 7.1:	Nuclear isotopes defined in the NMRSim program	50
Table 11.1:	Example Configuration Files	77
Table 11.2:	Example Gradient Spectroscopy Configuration Files	78
Table 11.3:	Configuration File profile.cfg	80
Table 11.4:	Experiment definition selco.cfg	82
Table 11.5:	Experiment Definition File dept.cfg	88
Table 11.6:	Experiment Definition jres.cfg	89
Table 11.7:	Experiment Definition cosydtp.cfg	91
Table 11.8:	Comparison of COSYPH and COSY Sequences	103

Index

Symbols

#define

Α

55
60
61

В

Bloch equation	25
bor11	50

С

50
52, 53
76
77
52

D

D031	61
DECB	60
Density matrix	9
dept	87
deuterium	50
dhc	56
DS	61

Ε

endmol	55
Environment variables	8
Excitation profile	25, 29, 57, 80
Experiment setup	15
Expressions	61

F

F1	60
F2	60
fluorine	50
FnMODE	61, 103

G

GPZ	73
GPZ031	61

Н

57

HS1-32	61
HV1-32	22, 61

I

IN031	61
inept	88
Initial spin system state	56

L

L031	61
Liouville equation	9, 25
lithium6	50
lithium7	50

Μ

mc	61, 103
Mixture	79
Molecule definition	53
Multiplicity	51

Ν

50
15, 63
61
49

0

01	60
02	60
O3	60
OFS	60

Ρ

P031	61
Parmod	59
phosphor	50
PL031	61
Preprocessor commands	57
proton	50
Pulse programs	47

R

59
10
51
47

rhv1-32

S

•	
sample	48
Selective excitation	81, 84
session.cfg	15
SF	60
SFO1	60
silicon	50
SP032	61
spdisp	39
Spin system definition	49
Spin system variable	22, 47, 56, 61
SPNAM	61
stdisp	38

Т

61
61

U

Update Examples	77

W

weak	52

Lastpage

1	Introducti	on	7
	1.1	New Features	7
	1.1.1	NMRSim 6.4	7
	1.1.2	NMRSim 6.0	7
	1.1.3	NMRSim 5.7	8
	1.2	Installation	8
	1.2.1	TopSpin	8
2	Theoretica	al Background	9
	2.1	Liouville Equation	9
	2.2	Relaxation	10
	2.3	Flow of the Simulation	11
3	Using the	Program	13
•	3 1	Program Start	13
	3.1.1	Parameter Definitions	13
	3.2	Exiting NMRSim	14
	3.3	User Data Directory	14
	3.4	Main Menu Commands	14
	3.4.1	File	14
	3.4.2	NMR Wizard	15
	3.4.3	Edit	16
	3.4.4	Go	17
	3.4.5	Utilities	19
	3.4.6	Options	19
	3.4.6.1	Options Dialog	19
	3.4.6.2	Processing Parameters	20
	3.4.6.3	Output File	20
	3.5	The "sample" - Spin System Definition	21
	3.6	Pulse Sequence Definition	22
	3.7	Running the Simulation	23
4	Bloch Sim	nulator	25
	4 1	Toolbar	26
	4.2	Calculate	26
	4.2.1	Time Evolution	26
	4.2.2	Excitation Profile	29
	4.2.3	RF Field Profile	31
	4.2.4	Waveform Analysis	32
	4.3	Examples	36
	4.4	. Waveform Analysis using the TopSpin Shape Tool	38
5	Pulso Pro	gram Display	30
0	51	Display Control	42
	52	Pulse Program Text Editor	43
	0.2	- also - regram rok Eakon	+0

Lastpage

	5.3	Pulse Program Visualization Details	44
	5.3.1	Spectrometer Channels	44
	5.3.2	Pulse Trains, Virtual Channels	44
6	Pulse Pro	orams	47
-	6.1	Pulse Program Commands Implemented in NMRSim	47
	6.2	Decoupling	47
	6.3	New Commands	47
7	Onin Over	om Definition Summen	40
1		Support	49
	7.1	Syntax	49
	7.1.1		49
	7.1.2		51
	7.1.3		52
	7.1.4	weak	52
	7.1.5	Dipolar	52
	7.1.6	Qpolar	53
	7.1.7	Molecule	53
	7.1.8	Endmol	55
	7.1.9	Add	55
	7.2	Initial Spin System State	56
	7.3	Spin System Variables	56
	7.4	Preprocessor Commands	57
	7.5	Spin System Limitations	58
8	NMRSim	Parameter Definition	59
-	8.1	Durations	59
	8.2	Radio Frequency Field Intensities	59
	8.3	Size Parameters	59
	8.4	Error Checking	59
	8.5	Parameter Description	59
	8.6	Expressions in Pulse Programs	61
	0.0		01
9	NMR Wiza	ard	63
	9.1	What is NMR-Wizard	63
	9.2	Using NMR-Wizard	63
	9.3	Where are the limits ?	69
10	Gradient	Spectroscopy	73
	10.1	Gradients in Pulse Programs	73
	10.2	Gradients in NMRSim	73
	10.2.1	Numerical Simulation of Gradients	73
	10.2.1	Examples of Gradient Experiments	73
	10.3 1	Decay of Magnetization I Inder the Influence of Gradients	74
	10.3.2	COSY Experiment	74
	10.0.2		, 4
11	Examples		77
	11.1	How to Setup a New Experiment	78
	11.2	The First 1D Experiment	78
	11.3	Excitation Profiles of Shaped Pulses	80
	11.4	Selective COSY	81

	11.5	1D HOHAHA with Z-filter	84
	11.6	DEPT Experiment	86
	11.7	J Resolved Experiment	89
	11.8	Phase Sensitive DQ COSY Experiment	91
	11.9	Inversion Recovery Experiment	93
	11.10	Heteronuclear Correlation	95
	11.11	Inverse Experiment	96
	11.12	1D Heteronuclear Correlation	97
	11.13	Gradient Experiments	99
	11.13.1	Gradient COSY Experiment	99
	11.13.2	Watergate	101
	11.14	Phase Sensitive COSY Experiment Using the mc Command	103
12	Contact		105
List of Figures		ures	107
	List of Tables		109
	Index		111

Bruker Corporation

info@bruker.com www.bruker.com

