TopSpin

® TopSpin AU Programming
User Manual
Version 010

. : : NMR
Innovation with Integrity

Copyright © by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means without the prior consent of the

publisher. Product names used are trademarks or registered trademarks of their re-
spective holders.

© November 03, 2021 Bruker Corporation

Document Number:

P/N: H146194

Contents

I 131 o T 1 o 7
1.1 What is NeW in TOPSPIN 4.0.......ueiiiiiiiiiiiee ettt e e 7
1.2 What is New in TOPSPIN 3.0 .. e e e e e e 7
1.3 What is NeW in TOPSPIN 2.7t e e e e e 7
1.4 What is NeW in TOPSPIN 2.0.. ...t e e e e e e e eee s 8
1.5 What are AU ProgramsS?o ettt ettt a e e e e nnneeee s 8
1.6 Other Manuals Describing AU Programs/Macroscocueiieiiiiiiieeiiiiee e 8
1.7 Quick Reference to Using AU Programscooiiiiiiieioiieieiieee et sieee e 8
1.8 Installing and Compiling AU Programs............ceeiiiiiciiiiiiiiiieeee e e e e e e 9
1.9 EXeCUting AU ProgramiS.........coooiieiiiiiiie ettt 9
1.10 ViIieWiNg AU Programsoooiiiiiee ettt e neneeeeeeeas 10
1.11 Compiling AU Progams with OptioNS............eeeiiiiiiiiiiiiiiiiieeeee e 10
1.12 ADOUL AU MACIOS ...ttt ettt e e e e e e e e s e eeeeeaeeeeseeannnsneeeeees 11
1.13 About Bruker Library FUNCHONScuuiiiiiiiiiiici e 11
1.14 Creating Your OWn AU ProgramsSccueiiee ittt neea e e 12
1.141 Writing @ Simple AU Programeeeiiiec oot 12
1.14.2 USING VaTTADIES ...ttt et e e e e 12
1.14.2.1 Predefined Dedicated Variablesouiiiiiiiiiiii e 12
1.14.2.2 Predefined General Variables.............ocouiiiiiiiiiiie et 13
1.14.2.3 User Defined Vari@bIesooueiiiiiiiiiiie ettt e e e e e e e e e ennnnes 13
1.14.3 Using AU Macros With ArguUMENTSuuiiiiiiiiiii e 13
1.14.4 Using AU Programs wWith ArgumMENtsoooiiiiiiiiiiiie e 14
1.14.5 Using C-Language StatementsS.........cccuuviiiiiiiiie e a e 15
1.14.6 Additional Hints on C-Statementscooiiiiiiiiiii e 15
1.14.7 Viewing Bruker Standard AU Programs for Macro Syntaxccccocveeviiiiiiieeeiiiiinenen. 16
1.15 How an AU Program is Translated into C-Codeccceoouiiiieiiiiiie e 16
1.15.1 Using the Native gcc COMPIIET...........uuuiiiiiiiiiiie et a e 17
1.16 Listing of all Predefined C-Statements ... 18
1.16.1 INCIUAING HEAAET FilES ... 18
1.16.2 Predefined Dedicated Variablesc..coooiiiiiiiiiii e 18
1.16.3 Predefined General Variables......... ..o 19
1.17 What to do after Changing a Parameter in an AU Program?...........cccccciiiiiieceiiiieenenn. 20
1.18 Font and Format CoNVENLIONScoiiiiiiiiiiiie e 21

2 Inventory of AU Macros and Bruker Library FUNCtions.........ccccc i 23
2.1 NamMING CONVENTIONS ...ttt e e e e e e e e e et e e e e e e e e e e e e aannnes 23
2.2 Macros for Data set Handlingccccuuviiiiiiiiiice e 23
2.3 Macros Prompting the User for INpUt..........ooiiiiiiii e 25
2.4 Macros Handling TopSpin Parametersooo oo 25
2.5 ACQUISIEION MACIOS ... e e e e e e e e e e e e e ae e 26
2.6 Macros Handling the Shim Unit and the Sample Changerccccooiviieeiieeiiiiiieci, 27
2.7 Macros Handling the Temperature Unit.............coooiiiiiiiii e 27
2.8 Macros Handling the MAS UNit.........ooiii e 28
29 1D ProCeSSING IMACIOScoiiiiiiiiiiie ettt e e e et e e e e e e e e e e e nnbebeeeeeeas 28

H146194_10_010 i /122

210 Peak Picking, Integration and Miscellaneous Macros...........ccccoccveeveiiiiiieie e 30
2.1 Macros for Algebraic Operations on Data Setscccceviiiiiiii i 30
212 DecoNnVOIULION IMBCIOSueiiiiiiiiiiie et 31
213 2D ProCeSSING IMACTOSceiiiiiiiiee ittt ettt ettt e ettt e e e e st e e e e nnbaeeaeeanes 31
214 Macros Reading and Writing Projections etC. ... 33
2.15 3D ProCessiNg IMACIOSuuuiiiiiiiieiie ettt e e e e e e et e e e e e e e e as 34
2.16 Spectral Width Calculation MacCroSccccuuiiiiiiiiiee e a e 35
217 Plot Editor Related MacCIOSoooiieeeee e e e e e e e 35
2.18 Macros Converting Data Sets.......ooi i 36
2.19 Macros to Execute Other AU Programs, TopSpin Macros or Commands...................... 36
2.20 Bruker Library FUNCHONSooiiiiiiee e 37
2.21 Macros for LOOP CONIOLoiiiiieiii ettt e e e e e e e e e e e e e annnnes 38
2.22 Macros to Return from an AU Programcc..eeeoiiiiiie i 38
3 Detailed Description of AU MacCroOS........ccoccmriiiiiiiiiiiiiismsmrr e s mmsss s s s s s s mmmns e s e s s eses 39
3.1 GENETAl AU MACTOSeiiieeiiiiie ettt e ettt e et e e e e ettt e e e e e st e e e e e anteeeeeeanseeeeeeannees 39
3.1.1 (O =) oSO PPPRPR 39
3.1.2 DN SRS 40
3.1.3 D1 5 SRS 41
3.1.4 D0\ ST PR PRI 41
3.1.5 XAUP ettt 41
3.1.6 XAUPWV ettt ettt ettt e ettt e e e a et e e st e e am e e e amee e e amteeeamseeeamteeeaneeeanseeeaaneeeans 42
3.1.7 VWAIT _UNTIL ettt ettt etk et e et e e mt e e e st e e emte e e smneeeanbeeesnneeans 42
3.2 TopSpin INterface FUNCLUONSuuiiiiiiiiciii e 43
3.3 Macros Changing the Current AU Data setccocooiiiiiiiii e 43
3.3.1 SETCURD AT A ettt ettt ettt e et e e e et e e e e be e e e aeeeeaneeeeaneeeeanneeaanseeeaneeaans 43
3.3.2 [NS i SO RPOUPR 44
3.3.3 DATASETZ2, DATASETS ...ttt ettt ettt 45
3.34 LC N 17N T RS 46
3.3.5 1= N USSR 46
3.3.6 DEXPINO ...ttt bttt a ekttt e e et e e be e nnne s 47
3.3.7 REXPINO ...ttt ettt e ekttt et 48
3.3.8 1] (0 10 1N 2SR 48
3.3.9 DPROGCNO. ...ttt ettt ettt ettt e ettt e e aa et e e ket e e an bt e e enee e e anbe e e anteeeanneeeenneas 49
3.3.10 RPROGCNOttt a et a ettt et e et e e sbe e ebne s 50
3.3.11 VIEWVD AT A ettt ettt e ettt e e ettt e e e at e e e see e e s e e e ameeeeanteeeanseeeanteeeanseeeanseeeaneeeans 51
3.3.12 VIEWDATA_SAMEWIN ...ttt et e et e et e e emee e e smaeeeaneeeeaneeeans 51
3.4 Macros Copying Data SEIScoocuiiiiiiiiii s 52
3.41 VR A et h et e et e e 52
3.4.2 VWV RP ettt ettt oot e e n et e Rt e e en et e e e et e e e te e e ane e e e teeeanneeeaneeeeaneeeans 52
3.4.3 R P A ettt ettt a et et e R bt e e e bt e e e et e e e bt e e e be e e e neeeareeeaaneeeans 53
3.5 Macros Handling ROWS/COIUMNSuuuiiiiiiiiiee ettt e e e e e e e e 54
3.5.1 T USSR 54
3.5.2 TSR 54
3.5.3 LTS S SRR PUPRTPIN 55
3.54 LTS T O O PP PT P OU PR PUPRPPIN 56
3.5.5] OSSR 57
3.5.6 VS ER ettt ettt e et e et e e e ne e e e ee e e e neeeareeeaanneeans 58

iv/122 H146194_10_010

3.5.7 RSERZD ...ttt ettt e e e e e e e e e e e e e b e e e e e a b e e e e e nnraeeeeanrees 59
3.6 Macros Converting Data SEISuiiiiiiiiiiee e 59
3.6.1 TOUDX, TOUDXS ...ttt ettt ettt e e ettt e e e e sttt e e e et e e e s nnnneeeens 59
3.6.2 FROMUDX ...ttt ettt ettt e e et e et e e e e e e e e e e e e e e e b seeeeeeanbaeaeeeansbeeeeeansees 60
3.6.3 RY 0@ L LY SO 61
3.6.4 JOONV Lttt e ettt e e e ettt e e e e ea b et e e e e ettt e e e e e e bbe e e e e aanraeeeeeanaeeaeean 62
3.7 Macros Handling TopSpin Parametersccoooiiiiciiiiiiiiiiiieee et 62
3.7.1 FETCHPAR. ..ottt e et e e e et e e e et e e e e e b e e e e e enbeeeeeennsseeeeeensees 63
3.7.2 FETCHPARS ..ottt e e et e e e ettt e e e e e bt e e e e e et e e e e e nnnreeeeeansees 64
3.7.3 STOREPAR ..ttt e e ettt e e e e ettt e e e e e anba e e e e e anbe e e e e e abaeeeeeaan 65
3.74 STOREPARN.ot ettt e e e e et e e e e et e e e e e et e e e e e s sebbaeeeessbaeeaeeaans 66
3.7.5 STOREPARS ...ttt e ettt e e e e ettt e e e e e sttt eeeeessbaeeeessasbseeeeeanbaneeeeaans 67
3.7.6 RP AR ettt e e e e e et e e e e e e htee e e e e b ae e e e e nreeeeeaanrees 68
3.7.7 VWP AR ettt et et e bt e e e h bttt e e e ne et e e e e nn e e e e annaeeens 69
3.8 Macros for Plot EQItOr/AULOPIOLoooiieiiee e 70
3.8.1 AUT OPLOT ..ttt ettt ettt e e ettt e e e s e sas e ee e e s see e e e e e anssaeeaeaassseeeeeannsseeeesannsneeens 70
3.8.2 AUTOPLOT_TO _FILE ... ittt e e s e e e s nnnneeee s 71
3.8.3 CREATE_PORTFOLIO.... .ttt et e 71
3.84 ADD_CURDAT_TO _PORTFOLIO......uiiiiiiiiiiiiie ettt a s 72
3.85 ADD_TO_PORTFOLIOceiiiiiiiiitt ettt e et e e e e e e e s ennnre e e e annnneeeeas 73
3.8.6 CLOSE_PORTFOLIO ...ttt ettt et e ettt e e e e et e e e e e e e e e e nnees 73
3.8.7 AUTOPLOT_WITH _PORTFOLIO... ..ottt 74
3.8.8 AUTOPLOT_WITH_PORTFOLIO_TO_FILE ...ccciiiiiiieeeieeee et 75
3.9 Macros Prompting the User for INPUL..........ooiiiiiiiiii e 75
3.9.1 €1 |V PRSP SRR 75
3.9.2 GETFLOAT, GETDOUBLE ...ttt 76
3.9.3 GETSTRING ...ttt e e et e e e e et e e e e e s bt e e e e e enbe e e e e e ansreeeeeannees 77
4 Bruker Library FUNCHONS.........ciiiiiiiiic e r e s mmnn s e s e a e e 79
4.1 CalcEXpTime, PrintEXPTIME ..ot e e e e e e 79
4.2 ChECKSUMFIIE ...t e et e e e e et e e e e e e nree e e e e neees 80
4.3 0 Lo 117N o] o 1Y Lo SRRSO 81
4.4 0 Lo 11O = (USSR 82
4.5 FIESEIECT ...ttt e e e e e e e e e e e e e e e e e e 82
4.6 o = (o 1 PSSP 83
4.7 L=< L USSP 85
4.8 Lo o] o o [o7 o T = o R 85
4.9 GEENIGNEST <. a e 86
4.10 getParfileDirFOrREAd ... 86
4.11 GetParfileDirFOrWIITEo e 88
412 GOESEAN e a e e 89
413 GetTSVEISIONDOL ...t e et e e e et e e e e ree e e e nees 90
4.14 10 T T PRSI 91
415 PathXWINNIMR ...ttt e e e e e e e e e e e bt e e e e e et e e e e e ennsseeeeeensees 91
4.16 POW _NEXE. ..t e e e e et et e e e e e e e e e e e e et e eeeeaeseae e b e e e e e aaeaaaaaaaaeeareeranaaann 92
417 (o To = PR 93
4.18 SNOW_SEATUS .ot e e e e e aae 94
4.19] 00 11 1 SRR 94

H146194_10_010 v /122

4.20] =T T o SRR 95
4.21 (UL o1[Ta 14 PRSP PPPPRPRRRPRPPIN 95
5 List of Bruker AU Programs ... s sssss s s sssss s s s ssss s s ssssssss s sssssnnsnes 97
6 TOPSPIN Parameter TYPES ...ccueuieiiiiiiiiiiiisssnmnrrererrsisssssssssssssssssssssessasssssssssnnssnssesssessssssssssssnnssnssensens 107
6.1 INtEger Parametersooo i 107
6.2 Float Parameters e a e e e e 107
6.3 DoUbIE Parameterse i 108
6.4 Character-string Parameters..........ocuueiiiiiiiiei e 108
7 0) 31 - T 109
LisSt Of FIQUIESccceieiiceie i an e 111
List Of TABIEScoviieiiiiii i 113
3 T = 115

vi/ 122 H146194_10_010

Introduction

1 Introduction

1.1 What is New in TopSpin 4.0

* AU-program ‘getheliumlog’ to copy and update helium-log file from spectrometer to
workstation.

» AU-program method ‘int getProbelId (char* probeld, size t size)’togetthe
Id of the installed probe, e.g. 'Z8157_0001’

* AU-program method ‘int getProbeName (char* probeName, size t size)’to
get the name of the installed probe.

* AU-program method ‘int isAtmaProbe ()’ to find out whether the installed probe has
ATM capabilities.

* AU-program method ‘int isSolidProbe ()’ to find out whether the installed probe is a
solid state probe.

* AU-program method ‘int getSpectrosVersion (char* cStringBuffer, const
size t bufferLength)’ to read out version of operating system on the spectrometer.

* AU program function GetTsVersionDot to return the current version and patchlevel of
TopSpin in a dotted format. For further information please refer to chapter
GetTsVersionDot [90].

Please note that the former function getxwinversion () is deprecated.

* AU-program ‘sertoint'to convert 64-bit double ser data (Topspin 4.0 format) into 32-bit
int data (Topspin 3.5 and earlier format)

» AU-program “sertodouble' to convert 32-bit int ser data into 64-bit double data

* new command line option ipap2 for AU program split which makes AU program
splitipap2 obsolete

1.2 What is New in TopSpin 3.0

New AU macros FETCHERETICPAR and STOREERETICPAR.The macros FETCHERETICPAR
and STOREERETICPAR can be used within AU Programs to read and write arbitrary

parameters in the eretic file residing in the PROCNO of the current data set. Similar to the
macros FETCH1PAR and FETCHDOSYPAR.

1.3 What is New in TopSpin 2.1

Changes in TopSpin 2.1 with respect to AU programs.

» The macro XAU requires two arguments, allowing you to freely choose the arguments to
be propagated from the calling AU program.

» C-language argument syntax i_argv and i_argc can be used in AU programs.

* New AU macros to delete data have been added: DELETEPROCDATA,
DELETEIMAGINARYDATA, DELETERAWDATA, DELETEPROCNO, DELETEEXPNO,
DELETENAME .

* New AU macros to fetch/store nD data have been added: FETCHPARN, FETCHPARNS,
STOREPARN, STOREPARNS.

* The functions getParfileDirForRead and getParfileDirForWrite replace the
functions getstan and PathXWinNMR*.

H146194_10_010 71122

Introduction

1.4 What is New in TopSpin 2.0

Changes in TopSpin 2.0 with respect to AU programs.

« AU programs that contain a plotting command can be entered with the argument noplot.
This argument prevents plotting.

« All AU-macros, e.g. EF, APK, QUIT mustbe specified in capital letters. In previous

versions of TopSpin and its predecessor XWIN-NMR, capital letters were recommended
but not required.

* New macros exist for automatic creation of Plot Editor layouts. Examples are
LAYOUT OBJ 1Dand LAYOUT ADD.

1.5 What are AU Programs?

AU programs can be considered as user defined TopSpin commands. Any repetitive task is
most effectively accomplished through an AU program. All commands which can be entered
on the TopSpin command line can also be entered in an AU program in the form of macros.
This includes selecting and changing data sets, reading and setting parameters, starting
acquisitions, processing data and plotting the result. A simple AU program is nothing else
than a sequence of such macros which execute the corresponding TopSpin commands.
However, AU programs may also contain C-language statements. In fact, an AU program is a
C-program because all AU macros are translated to C-statements. TopSpin automatically
compiles AU programs to executable binaries, using a C-compiler.

TopSpin offers three other ways of creating user defined commands: TopSpin macros (not to
be confused with AU macros), Tcl/Tk scripts and Python programs. They differ from AU
programs in that they do not need to be compiled.

1.6 Other Manuals Describing AU Programs/Macros

Creating and using AU programs is described and referred to in various other manuals:

* Processing Reference Guide: for each processing command for which an AU macro
exists, this macro and its usage is specified.

» Acquisition Reference Guide: for each acquisition command for which an AU macro
exists, this macro and its usage is specified.

* NMR Guide: AU programs can be sorted and listed according to their usage showing
their names and short descriptions.

+ Data Publishing Manual: chapter about AU program macros for plotting.

1.7 Quick Reference to Using AU Programs

Bruker delivers a library of standard AU programs with TopSpin. After TopSpin has been
installed you must do the following in order to use them:

1. Run expinstall once to install all AU programs. Typically you have been prompted to do
that on the first start after each installation of TopSpin.

2. Enter the name of an AU program to compile and execute it.
Furthermore, you can write your own AU programs in the following way:
1. Enter edau <name>The file <name> will be opened with a text editor.
2. Do one of the following:
— Write your own AU program from scratch.
— Read in an existing AU program and modify it according to your needs.

8/122 H146194_10_010

Introduction

3. Click Save, exit and compile. If you want to compile the AU program without executing
it, type cplbruk <name> for Bruker AU programs and cplbruk user/<name> for custom
AU programs. The reason is that customer AU programs are per default saved in a sub
folder called user.

4. Enter the name of the AU program to execute it.

1.8 Installing and Compiling Au Programs

When you have installed a new version of TopSpin, you must install the library AU programs
once by executing the TopSpin command expinstall. Your own AU-programs are also
available if you have either imported your previous spectrometer configuration or specified
the respective source directory in TopSpin. An AU program is automatically compiled the first
time it is executed, i.e. when its name is entered on the command line.

To compile an AU program without executing it:
* Enter cplbruk <name>
or
* Enter edau <name> and click Exit and Compile.

To compile all Bruker AU programs:
* Enter compileall.

1.9 Executing AU Programs

Once an AU program has been installed, you can run it like this::
1. Enter the name of the AU program. This will work if:

— No TopSpin command or macro with the same name exists. Here we refer to a
TopSpin macro created with edmac.

2. Enter edau.

A list of available AU programs will appear. Click on the AU program you want to execute
and click Execute.

3. Enter one of
— xau NAME
— xauw NAME
— xaua
— Xxaup
where NAME is the name of the AU program.
With xau and xauw, the specified AU program will be launched.

With xaua, the AU program specified in the acquisition parameter AUNM of the current
data set is executed.

With xaup, the AU program specified in the processing parameter AUNMP of the current
data set is executed.

The commands xauw, xaua and xaup wait for the termination of the AU program before
the next command is executed, while xau does not wait.

See also
XAU [r 40], XAUA | 41], XAUP [» 41], XAUPW [» 42]

H146194_10_010 9/122

Introduction

1.10 Viewing AU Programs

You can view existing AU programs in the following:
+ Enter edau.

— A dialog box listing all AU programs is opened. In the Source pull down menu you can
choose between Bruker defined and customer (user) defined AU programs.

» Click on an AU program in the list.

— When you open a Bruker AU program, it is shown in read only mode which means
you cannot edit it. When you open a user-defined AU program it is shown in edit
mode which means you can change it.

See also
List of Bruker AU programs [97]

1.1 Compiling AU Progams with Options

TopSpin enables you to add options to the AU program compilation with the command
debugmod. This will display a dialog “TOPSPIN Runtime Debug Switches”.

In the line “DEBUG_MAKEAU”, click on the arrow key and select the appropriate option.
Available options:

-verbose: enable verbose output

-debug: compile with debug flags

-warning: enable pedantic ANSI warnings

-error: no longer supported

-cfile: do not remove temporary .c file after compilation has finished
-optimize: compile with optimizer flags

-static: use static libraries to link AU programs

-native: use native Linux gcc or Microsoft VC++ compiler (overrides -cygwin)

n The changes are lost when TopSpin is closed.

If you want to specify more options, you can run the compilation in the command line of a
shell terminal (Linux) or Command Prompt a.k.a cmd (Windows). On Windows, you can open
the “Command prompt” or “GNU Shell” in the TopSpin Utilities folder for that purpose.
Otherwise, run

cd <tshome>

before the call to makeau in the examples below. Each command in the examples has to be
typed in a single line.

Example 1: Compile a Bruker AU program
Linux :

./topspin -e exp/stan/nmr/au/makeau -native -optimize au cp

10/122 H146194_10_010

Introduction

Windows:

topspin -e exp\stan\nmrlau\makeau -native -optimize au cp

Example 2: Compile a user AU program
Linux :
./topspin -e exp/stan/nmr/au/makeau -user user -native -warning

my au_program

Windows:

topspin -e exp\stan\nmrlau\makeau -user user -native -warning
my au_program

Example 3: List all available options
Linux :

./topspin -e exp/stan/nmr/au/makeau -help

Windows:

topspin -e exp\stan\nmr\au\makeau -help

1.12 About AU Macros

We will use the word macro rather often throughout this manual referring to AU macros. This
should not be confused with TopSpin macros which are files containing a sequence of
TopSpin commands. TopSpin macros are created with edmac and executed with xmac. An
AU macro, however, is a statement in an AU program which defines one or more TopSpin
commands, library functions or C-language statements. In its simplest form, an AU macro
defines one TopSpin command. For example the macros zG and FT execute the TopSpin
commands zg and ft, respectively. Other macros like FETCHPAR and IEXPNO do not define
TopSpin commands, their function is only relevant in the context of an AU program. More
complex macros may contain several TopSpin commands and/or C-statements. All
predefined macros in AU programs are written in capital letters. They are automatically
translated to the corresponding C-code when the AU program is compiled. AU macros are
defined in the file:

<tshome>/prog/include/aucmd.h

1.13 About Bruker Library Functions

Bruker library functions are C-functions which are contained in Bruker libraries. They offer the
TopSpin programming interface, for example the display of a list of data sets from which the
user can select one data set. If you use a Bruker library function in an AU program the
corresponding library is automatically linked to the AU program during compilation. The most
important and versatile Bruker library functions are described in Macros Handling TopSpin
Parameters [62].

H146194_10_010 11/122

Introduction

1.14 Creating Your Own AU Programs

1141 Writing a Simple AU Program

Before you start writing an AU program, you might want to check if an AU program already
exists which (almost) meets your requirements. If this is not the case, you can write your own
AU program in the following way:

1. Enter edau <au-name>Your preselected TopSpin text editor will be opened. To change
the text editor, enter set and click Text Editors.

2. Do one of the following:

— Insert an existing library AU program and click on File | Save As to save it in the user
folder and modify the copy to your needs.

— Write a new AU program using the macros as described in this manual.

3. The last macro in a basic AU program is typically QUIT (or QUITMSG).
Note: that the macro QUIT defines the closing C-language '}’ statement.

4. Click Save, exit and compile. If you are not using the internal editor, you can compile
the AU program in a separate step with the command cplbruk <name>.

1.14.2 Using Variables

Since AU programs are C programs you can use all constructs of the language C, especially
C-language variables. Several variables are already predefined for usage in AU programs. In
fact, we distinguish three different types of variables:

* Predefined dedicated variables.
» Predefined general variables.
» User defined variables.

1.14.2.1 Predefined Dedicated Variables

Predefined dedicated variables have the following properties:
» They do not need to be declared in an AU program.
» Their declaration is automatically added during compilation.
* They are known to the AU main body and to possible subroutines.

* They are set implicitly by certain macros, e.g. the variable expno is set by macros like
DATASET and IEXPNO.

» They should not be set explicitly, so do NOT use statements like:
expno = 11;
FETCHPAR ("NS", &expno)
» They can be evaluated in macros or C-statements, e.g.:
DATASET (name, expno, 2, disk, "guest") il=expno+l;
» Examples of different types of predefined dedicated variables are:
char-string: name, disk, user, name?2
integer: expno, procno, loopcountl, loopcount2, lastparflag

A complete list of all predefined dedicated variables with their types can be found in Including
Header Files [18].

127122 H146194_10_010

Introduction

1.14.2.2 Predefined General Variables

Predefined general variables have the following properties:
» They do not need to be declared in an AU program.
* Their declaration is automatically added during compilation.
* They are known to the AU main body but not to possible subroutines.
» They can be freely used for various purposes.
» Examples of different types of predefined general variables are:
integer: i1, i2, i3
float: £1, f2, £3
double: d1, d2, d3
char-string: text

A complete list of all predefined general variables with their types and initial values can be
found in Predefined General Variables [» 19].

1.14.2.3 User Defined Variables

For simple AU programs the number of predefined general variables is sufficient, you do not
need to declare any additional variables. For more complex AU programs you might need
more variables or you might want to use specific names. In these cases you can define your
own variables in the AU program. User defined variables have the following properties:

« They must be declared at the beginning of an AU program or, if the AU program contains
sub routines, at the beginning of the sub routines where the variables are referenced.

» They can be freely used for various purposes.
» They are known to the main AU program or to the sub routine where they are defined.
» Examples of declarations are:

int ivarl, ivar2;

float fvarl, fvar2, fvar3;

double dvarl, dvar2, dvar3;

char cstrl1[20], cstr2[200];

Note: According to the syntax of the C language you can define variables in a block
anywhere in the program. In that case their use is restricted to that block.

Example:

{
int iwvarl;

/* do something with ivarl */

}

-> at this point ivarl is no longer valid

1.14.3 Using AU Macros with Arguments

Several AU macros take one or more arguments. Arguments can be constants (values) or
variables. In fact, an argument can be specified in four different ways as described here for
the macro REXPNO:

* as a constant, e.g.:

H146194_10_010 13/122

Introduction

REXPNO (3)

* as a predefined dedicated variable e.g.:
REXPNO (expno+1)

 as predefined general variable, e.g.:
il = 6; REXPNO(il)

+ as a user defined variable,e.g.:

int my exp;

my exp = 1;
REXPNO (my_exp)

It is very important that the arguments are of the correct type. Basic types are int, float,
double, char. Derived types are long int, unsigned int, arrays of or pointers to any of these.
Some macros, for example STOREPAR, take TopSpin parameters as arguments and each
parameter is of a certain type. For example, the AU statement:

STOREPAR ("01", dl)

stores the value of the variable d1 into the parameter O1. The predefined (double) variable
dl is used since O1 is of the type double. The second argument could also be a constant,

e.g..
STOREPAR ("O1", 287.15)

Some macros such as FETCHPAR require a reference to a variable.

Example: FETCHPAR ("01", &d2):

A list of all TopSpin parameters and their type can be found in TopSpin Parameter Types
[107].

1144 Using AU Programs with Arguments
An AU program can be called with arguments in the command line. The given arguments are
available within the AU program as C-language variables:
i argc: the number of arguments in the list defined by i argv
i argv:an array of strings containing the list of the arguments
cmd: all specified arguments concatenated to a single string
The first argument in the list 1 argv is the AU program path name and the second argument
is always exec. So for an AU program entered without arguments, i argc = 2 and cmd is
an empty string.
For example myau al a2
i argc = 4
i argv[0] = myau
i argv[l] = exec
i argv([2] = al
i argv[3] = a2z
i argv([4] =0
cmd = "al a2"
14 /122 H146194_10_010

Introduction

n Note that cmd is actually legacy code whose usage is discouraged. It may no longer be

supported in future versions. In this example, i argv[5] ... are undefined and should
not be referenced.

1.14.5 Using C-Language Statements

AU programs can contain AU macros but also C-language statements like:
+ Define statements, e.g.: #define MAXSIZE 32768
* Include statements, e.g.: #include <time.h>
» Variable declarations, e.g. int ivar;
* Variable assignments, e.g.: ivar = 20;
 loop structures, e.g.: for, while, do
» Control structures, e.g.: if-else
» C-functions, e.g.: strcpy, strcmp, sprintf

Important: several C-language statements (including declarations of variables) are already
predefined and automatically added during compilation of the AU program.

A example of an AU program using macros and C-statements is:

int eno, pno;
char datapath [500], dataname[50], datauser([50],
datadisk([200];

(void) strcpy (dataname,name);

(void) strcpy (datauser,user);

(void) strcpy (datadisk,disk);

eno = expno;

pno = procno;

(void) sprintf (datapath,
"$s/data/%s/nmr/%s/%d/pdata/%d/title",
datadisk, datauser, dataname, eno, pno);

if ((i1 = showfile (datapath)) < 0)
{
Proc_err (DEF _ERR OPT, "Problems with showfile function");

}
QUIT

Note that QUIT is an AU macro, strcpy and sprintf are C-functions and showfile
and Proc_err are Bruker library functions.

For an explanation of C-functions and more information on C-language we refer to the
literature on C-programming.

1.14.6 Additional Hints on C-Statements

If you are using C-language code in your AU programs, then there are a few things to be
considered.

» Using C-language header files:

Several C-language header files are automatically included in your AU program during
compilation. If you are using C-code which requires additional header files you must write
your AU program in a special way. The main AU program should be a call to a subroutine

H146194_10_010 15/122

Introduction

which performs the actual task of the AU program. The include statements for the header
file must be entered between the main AU program and the subroutine. This gives the
following structure.

AUERR = subroutine (curdat, cmd)
QUIT
#include <headerfile.h>

static int subroutine (const char* curdat, const char* cmd)

{
MACRO1
MACRO2

return O;

}

Such a structure is used in several Bruker library AU programs (e.g. amplstab, decon_t1,
etc.). Several Bruker library functions like PrintExpTime, gethighest, pow next and
unlinkpr also require an include statement in the AU program (see Bruker Library
Functions [» 79]).

+ Some macros, e.g. IEXPNO and IPROCNO change the current AU data set but do not
make it available for subsequent commands. If they are followed by a CPR_exec or any
C-statement which access the current AU data set, then you must precede that statement
with SETCURDATA (see also the descriptions of SETCURDATA, TEXPNO etc. in Macros
Changing the Current AU Data set [43]).

« If you are using C-language loop statements like for, do or while or control statements
like i £, we strongly recommend to always put the body of such statements between {}. If
the body only contains simple macros like zG or FT you can omit them because these
macro definitions already contain {}. However, more complex macros might internally
define C-statements that include loop or control structures. If such a macro is used within
a loop or control structure in the AU program, then you create nested loops which require
the usage of {}.

1.14.7 Viewing Bruker Standard AU Programs for Macro Syntax

The syntax of many AU macros is trivial, just enter the TopSpin command in capital letters.
Other macros and especially Bruker library functions are more complex. A detailed
description of frequently used AU macros and functions can be found in subsequent chapters
of this manual. Alternatively, you can also look for an existing AU program containing this
macro or function. If, for example, you want to know the syntax of the macro wrpa, just
search for an AU program containing the text WRPA in the directory:

<ts_home>\prog\au\src.exam
using the Windows or Linux Search function.

1.15 How an AU Program is Translated into C-Code

This paragraph is intended for users who want to get a deeper understanding of the
compilation process. If you simply want to write and use AU programs you can skip this
paragraph.

TopSpin automatically translates your AU program into C-language and compiles it. Files and
directories used during AU program compilation are:

/<tshome>/exp/stan/nmr/au/makeau
/<tshome>/exp/stan/nmr/au/vorspann

16 /122 H146194_10_010

Introduction

/<tshome>/prog/include/aucmd.h
/<tshome>/prog/include/inc

The compilation process is entirely controlled by the script makeau which performs the
following steps.

1. The file vorspann is prepended to your AU program. This file contains a variety of
definitions including

— The C-program main statement.
— #include statements of C-header files (which in turn contain other definitions).
— #define statements which define constants.

Predefined dedicated variables, e.g.: name, disk, user, expno, procno

Predefined general variables, e.g. : text, i1, i2, i3, f1, f2, £3, di,
dz2, d3

2. All macro definitions are replaced according to their definitions as described in the file
aucmd.h and in the inc directory. In some cases, the name of the macro is the name of
one of the files in inc directory and the entire content of the file represents that macro.

3. The file resulting from the previous step is compiled to an executable program. By
default, the compilation is done with the GNU C-compiler gcc which is delivered with
TopSpin. The linking process is done with the native linker which is part of the native C-
compiler cc. All AU program’s source files reside in:

/<tshome>/exp/stan/nmr/au/src
executables will be stored into:
/<tshome>/prog/au/bin

See also
About AU Macros [11]

1.15.1 Using the Native gcc Compiler

By default, AU programs are compiled with the Bruker delivered gcc compiler. If you want to
use the native operating system compiler, you can do that as follows.

1. From the Windows Explorer or LINUX file manager open the following file with a text
editor:

<tshome>/exp/stan/nmr/au/makeau
2. Search for the following line:
Sopt native = 1;
and remove the # character at the beginning of the line.
3. Save and close the file.
4. Start TopSpin and compile your AU programs.

Now, under Windows, the Visual C++ compiler will be used. The Visual C++ compiler should
be installed before TopSpin in order to allow TopSpin to import the compiler's environment.

Under Linux, the default GCC will be used.

n Note that this is not a part of the standard operating system.

H146194_10_010 17 /122

Introduction

1.16

To activate the native compiler for the current TopSpin session only, enter the following
command:

env set DEBUG_MAKEAU=-native

Listing of all Predefined C-Statements

1.16.1

Including Header Files

1.16.2

The following C-language header files are automatically included during compilation:
stdio.h, stdlib.h, unistd.h, string.h, errno.h, math.h, limits.h, fcntl.h
which reside in the following directory:
Under Windows: <tshome>/GNU/usr/include
Under LINUX: /usr/include
and
erropt.h, brukdef.h, lib/uni.h, lib/libcb.h, lib/util.h, sample.h, aucmd.h
Which reside in the directory:
/tshome/prog/include

Note that under LINUX, the packages glibc-kernheaders and glibc-devel must be installed to
be able to compile AU programs (see Installation Guide Linux).

Predefined Dedicated Variables

The following list contains all predefined dedicated variables, their type and some of the AU
macros by which they are set.

Note that most variables are set or modified by several macros and only one or two of these
macros are listed here.

type variable set by macros

int lastparflag USELASTPARS, USECURPARS
int loopcountl TIMES/END

int loopcount?2 TIMES2/END

int loopcount3 TIMES3/END

int loopcountinf TIMESINFINITE

char disk[256] GETCURDATA

char user[64] GETCURDATA

char typel[l16] GETCURDATA

char name[64] GETCURDATA

int expno GETCURDATA, IEXPNO
int procno GETCURDATA, IPROCNO
char disk2[256] GETCURDATA2

18 /122

H146194_10_010

Introduction

type variable set by macros
char user2[64] GETCURDATAZ2
char type2[16] GETCURDATAZ2
char name?2[64] GETCURDATAZ2
int expno2 GETCURDATA2
int procno?2 GETCURDATAZ2
char disk3[2560] GETCURDATA3
char user3[64] GETCURDATA3
char type3[16] GETCURDATA3
char name3[64] GETCURDATA3
int expno3 GETCURDATA3
int procno3 GETCURDATA3
char namelist[10] [64]
char dulist[10][256]
char userlist[10][64]
char parsetlist[10][16] RPARSETLIST
char pulproglist[10][32] RPULPROGLIST
int expnolist[15]
int procnolist[15]
int loopcountlist[15] RLOOPCOUNTLIST
float vtlist[128] RVTLIST
int xloopcount ILOOPCOUNTLIST
int xpulprog IPULPROGLIST
int xparset IPARSETLIST
int xdataset IDATA SETLIST
int xvt IVTLIST
int listcountl TIMESLIST
FILE *textfilepointer
FILE *debug
char longpath [PATH MAX]
char Hilfs string[PATH MAX

+ 2048]

Table 1.1: Predefined Dedicated Variables

1.16.3 Predefined General Variables

The following list contains all predefined general variables, their types and initial values:

H146194_10_010

19/122

Introduction

1.17

type variable initial value
int il 0
int i2 0
int i3 0
double dl 0
double d2 0
double a3 0
float f1 0
float £2 0
float £3 0
char text[4096]

Table 1.2: Predefined General Variables

What to do after Changing a Parameter in an AU Program?

After changing a parameter in an AU program Topspin must be updated with the changed
information. This can be done with the command show meta (argument). The argument
to the function call is one macro or a combination of several macros of this list:

* SM_RAW ---- Update raw data.
* SM RAWP ---- Update acquisition parameters.
* SM PROC ---- Update processed data.
* SM_PROCP ---- Update processing parameters.
* SM ALL ----- Update data and parameters.
* SM_SHOWR ---- Switch to raw data.
¢ SM_SHOWP ---- Switch to processed data.
* SM DEL ---- Removed data.
* SM_PEAK ---- Update peaks.
* SM INT ---- Update integrals.
Example 1:
Show meta (SM_SHOWP) ;
Example 2:
Show meta (SM PROC | SM PROCP | SM INT);

Please note that changing the peak list with a macro in the AU program does not require the
argument SM_PEAK. The changings are implemented automatically.

20/122

H146194_10_010

Introduction

1.18

Font and Format Conventions

Type of Information

Font

Examples

Shell Command,
Commands,
“All what you can enter”

Arial bold

Type or enter fromjdx
zg

Button, Tab, Pane and Menu Names

“All what you can click”

Arial bold, initial letters
capitalized

Use the Export To File
button.
Click OK.
Click Processing...

Windows, Dialog Windows, Pop-up

Arial, initial letters

The Stacked Plot Edit

Windows Names capitalized dialog will be
displayed.
Path, File, Dataset and Experiment | Arial Italics $tshome/exp/stan/nmr/

Names

Data Path Variables

Table Column Names
Field Names (within Dialog
Windows)

lists
expno, procno,

Parameters Arial in Capital Letters VCLIST
Program Code Courier go=2
Pulse and AU Program Names au_zgte
Macros edmac
Functions CalcExpTime ()
Arg_uments XAU (prog, arg)
Variables disk2, user?2
AU Macro Courier in Capital REX
Letters PNO

Table 1.3: Font and Format Conventions

H146194_10_010

211122

Introduction

22 /122 H146194_10_010

2.1

Inventory of AU Macros and Bruker Library Functions

Inventory of AU Macros and
Bruker Library Functions

Naming Conventions

2.2

This chapter lists most AU macros and Bruker library functions that are available for AU
programming. Simple macros with their short description are only mentioned in this chapter.
More complex macros and AU functions are mentioned here and described more extensively
in the following chapters. An asterisk behind the macro denotes that there is a detailed
description in one of the following chapters, such as: XXX * or XXX (...) *

The table below explains the macro conventions used in this chapter.

Macro Explanation

XXX The macro can be typed "as is". There is no further explanation for
the macro in this manual.

XXX (argl,arg?) | The macro XXX takes two arguments. Because the macro is easy
to use, there is no further description in this manual.

Table 2.1: Macro Conventions

Several AU macros that are described in this chapter require one or more arguments. These
arguments can be constants or variables as described in Predefined General Variables
[' 19]. It is very important to use the correct type of argument in a macro call. The macros
described in the tables of this chapter use the following arguments:

integer: i1, i2, i3, eno, pno

float: f1

double : d1

char-string: text, cmd, file, flag, mac, parm, parset,

prog, shim, typ, dsk, usr, nam

Note that the arguments i1, i2, 13, £1, d1 and text have the same names as the
corresponding predefined general variables. The predefined general variables are easy to
use because they do not need to be declared. You can, however, use your own variables as
macro arguments.

Macros for Data set Handling

Macro Description

GETCURDATA * Get the foreground data set.

SETCURDATA * Make the current AU data set available for subsequent
AU statements.

DATASET (....) * Set the current AU data set.

DATASET2 (....) * Set the 2nd data set (like the TopSpin command edc2).

DATASET3 (....) * Set the 3rd data set (like edc2).

H146194_10_010

23/122

Inventory of AU Macros and Bruker Library Functions

Macro Description

GETCURDATA2 Read the 2nd data set (like edc2).

GETCURDATA3 Read the 3rd data set (like edc2).

DEXPNO * Decrease the experiment number by one.

IEXPNO * Increase the experiment number by one.

REXPNO (eno) * Set the experiment number to the value of eno.

DPROCNO * Decrease the processing number by one.

IPROCNO * Increase the processing number by one.

RPROCNO (11) * Set the processing number to the value of 1.

DDATASETLIST Decrement to the previous entry in the data set list.

IDATASETLIST Increment to the next entry in the data set list.

RDATASETLIST (i1) Read the data set at position i1 of the data set list and
make it the current AU data set.

IFEODATASETLIST Checks if the end of the data set list is reached. The
answer is true if there is no further entry.

SETDATASET Set the current AU data set to the one currently defined
by the data set list.

DU (dsk) Set the disk unit (top level data directory) to dsk.

SETUSER (usr) Set the user name to the user usr.

RE (name) Read the data set name.

WRA (eno) * Copy the raw data to the experiment number eno.

WRP (pno) * Copy the processed data to the processing number pno.

WRPA(....) * Copy the raw and processed data to the specified data
set.

VIEWDATA * Show the current AU program data set in a new window
or activate the window that contains this data set.

VIEWDATA SAMEWINX* Show the current AU program data set in the current
window.

AUDITCOMMENTA (cmt) Add a user comment to the acquisition audit trail
(audita.txt).

AUDITCOMMENTP (cmt) Add a user comment to the processing audit trail
(auditp.txt).

GDCHECK generate checksum, making the processing audit trail
consistent.

GDCHECKRAW generate checksum, making the raw audit trail
consistent.

ACQUPATH (x) Returns the path of the file x in the acquisition data
directory (ACQU).

PROCPATH (x) Returns the path of the file x in the processed data
directory (PROCNO).

DELETEPROCDATA Delete processed data.

24 /122 H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro Description

DELETEIMAGINARYDATA Delete imaginary processed data.
DELETERAWDATA Delete raw data.

DELETEPROCNO Delete processed data directory (PROCNO).
DELETEEXPNO Delete raw data directory (EXPNO).
DELETENAME Delete data directory (NAME).

Table 2.2: Macros for Data set Handling

2.3 Macros Prompting the User for Input

Macro Description

GETDOUBLE (text,dl) * Prompt the user to enter a double value.

GETFLOAT (text, f1) * Prompt the user to enter a float value.

GETINT (text,il) * Prompt the user to enter an integer value.

GETSTRING (text,nam) * |Promptthe user to enter a text string.

Table 2.3: Macros Prompting the User for Input

2.4 Macros Handling TopSpin Parameters

Macro Description

GETPROSOL * Copy the probe and solvent dependent parameters to
the corresponding acquisition parameters.

FETCHPAR (par, &val) * Get an acquisition or processing parameter.

FETCHPARI (par, &val) Get an F1 dimension parameter (2D acquisition/
processing).

FETCHPAR3 (par, &val) Get an F1 dimension parameter (3D acquisition/
processing).

FETCHPARS (par, &val) * Get a status parameter (acquisition and processing).

FETCHPARLS (par, &val) Get an F1 dimension status parameter (2D).

FETCHPAR3S (par, &val) Get an F1 dimension status parameter (3D).

FETCHPARN (dir, par, &val) Get a parameter from specified direction (nD).

FETCHPARNS (dir, par, &val) |Get a status parameter from specified direction (nD).

STOREPAR (par,val) * Store an acquisition, processing or output parameter.
STOREPARL (par,val) Store an F1 dimension parameter (2D).

STOREPAR3 (par,val) Store an F1 dimension parameter (3D).

STOREPARS (par,val) * Store a status parameter (acquisition and processing).
STOREPARLS (par,val) Store an F1 dimension status parameter (2D).
STOREPAR3S (par,val) Store an F1 dimension status parameter (3D).
STOREPARN (dir, par, &val) Store a parameter to specified direction (nD).

H146194_10_010 25/122

Inventory of AU Macros and Bruker Library Functions

Macro

Description

STOREPARNS (dir, par, &val)

Store a status parameter to specified direction (nD).

FETCHPARM (par, &val)

Get a tomography measurement parameter.

STOREPARM (par,val)

Store a tomography measurement parameter.

FETCHT1PAR (par, &val)

Get a T1 parameter.

STORET1PAR (par,val)

Store a T1 parameter.

FETCHDOSYPAR (par, &val)

Get a dosy (eddosy) parameter.

STOREDOSYPAR (par,val)

Store a dosy (eddosy) parameter.

RPAR (parset, typ) *

Read a parameter set to the current data set.

WPAR (parset, typ) *

Write the current data set parameters to a parameter

set.

DELPAR (parset)

Delete the parameter set parset.

Table 2.4: Macros Handling TopSpin Parameters
PARSET is not used in any AU program

2.5 Acquisition Macros

Macro Description

7G Start acquisition; if raw data already exist, they are
overwritten.

GO Continue the acquisition on already existing raw data by
adding to them.

II Initialize acquisition interface.

RGA Automatic receiver gain adjustment.

MAKE ZERO_FID

Create an empty FID.

DEG90 Determine 90° pulse automatically.

GPULPROGLIST Prompt the user to enter the name of a pulse program list file
and read its contents.

DPULPROGLIST Decrement to the previous name in the pulse program list.

IPULPROGLIST Increment to the next name in the pulse program list.

RPULPROGLIST (il)

Read the pulse program name in position i1 of the pulse
program list and write it to the acquisition parameters.

SETPULPROG Store the current pulse program name from the pulse
program list.
IFEOPULPROGLIST Check if the end of the pulse program list is reached. The

answer is true if there is no further entry.

Table 2.5: Acquisition Macros

26/122

H146194_10_010

Inventory of AU Macros and Bruker Library Functions

2.6 Macros Handling the Shim Unit and the Sample Changer

Macro Description

AUTOGAIN Optimize lock gain.

AUTOPHASE Optimize lock phase.

AUTOSHIM ON Turn autoshim on.

AUTOSHIM OFF Turn autoshim off.

EJ Eject sample from the magnet.

IJ Insert sample into the magnet.

LOCK_ON Turn lock on.

LOCK_OFF Turn lock off.

ROT Turn rotation on (use value RO from acquisition parameters).

ROTOFF Turn rotation off and wait until rotation was turned off.

LOPO Set the lock parameters (lock power, lock gain, loop filter,
loop time and loop gain).

LFILTER (i1) Set the loop filter to the value of i1.

LG Auto-adjust the lock gain.

LGAIN (f1) Set the loop gain to the value of f1.

LO(f1) Set the lock power to the value of £1.

LTIME (£f1) Set the loop time to the value of £1.

LOCK Lock according to the parameters LOCNUC and SOLVENT
using the lock parameters from the edlock table.

RSH(file) Read the shim values from the specified file.

SETSH (shim,i1) Set one shim to the value of i1.

SWEEP_ON Turn the lock-sweep on.

SWEEP OFF Turn the lock-sweep off.

WSH (file) Write the shim values to the specified file.

TUNE (file) Start autoshimming with the specified tune file.

TUNESX Start autoshimming with the tune file defined by the currently

defined probe and solvent.
Table 2.6: Macros Handling the Shim Unit and the Sample Changer

2.7 Macros Handling the Temperature Unit
Macro Description
TESET Set the temperature on the temperature unit to the value of the

acquisition parameter TE.

TEGET Get the temperature from the temperature unit and store it in the
acquisition status parameter TE

H146194_10_010 271122

Inventory of AU Macros and Bruker Library Functions

Macro Description

TE2SET Set the temperature on the second regulator of the temperature
unit to the value of the acquisition parameter TE2.

TE2GET Get the temperature from the second regulator of the temperature
unit and store it in the acquisition status parameter TE2.

TEREADY (i1, £1) | After the temperature is set, wait until it is accurate to £1 degrees
for at least 10 sec., then wait 11 seconds for stabilization.

TE2READY (i1, £f1) |After the second temperature is set, wait until it is accurate to 1
degrees for at least 10 sec., then wait i1 seconds for

stabilization.

TEPAR (file) Read a file with parameter settings for the temperature unit.

GVTLIST Prompt the user to enter the variable temperature list name and
read its contents.

RVTLIST Read the contents of the variable temperature list file defined by
the acquisition parameter VTLIST.

DVTLIST Decrement to the previous value in the vtlist.

IVTLIST Increment to the next value in the vilist.

VT Read and set the temperature according to the current value of
the vtlist.

Table 2.7: Macros Handling the Temperature Unit

2.8 Macros Handling the MAS Unit

Macro Description

MASE Eject sample from MAS unit.

MASI Insert sample into MAS unit.

MASR Set spinning rate according to the acquisition parameter MASR.

MASRGET Get spinning rate from the MAS unit and store it in the status
acquisition parameters.

MASG (il) Start spinning of sample in MAS with at the most i1 retries.

MASH Halt spinning of sample in MAS.

Table 2.8: Macros Handling the MAS Unit

29 1D Processing Macros

Macro Description

ABS Automatic baseline correction (creates intrng file).

ABSD Automatic baseline correction with DISNMR algorithm (creates
intrng file).

ABSF Automatic baseline correction between limits ABSF1 and
ABSF2.

APK Automatic phase correction.

28 /122 H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro Description

APKO Zero order automatic phase correction.

APK1 First order automatic phase correction.

APKF Automatic phase correction using the spectral region
determined by ABSF2 and ABSF1 for the calculation of the
phase values.

APKOF Zero order automatic phase correction using the spectral
region determined by ABSF2 and ABSF1 for the calculation of
the phase values.

APKS Automatic phase correction especially suitable for polymer
spectra.

BC Baseline correction of FID (DC correction).

BCM User defined spectrum baseline correction.

CONVDTA (eno)

Convert digitally filtered FID into analogue (conventional) form.

EF Exponential window multiplication + Fourier transform.

EFP Exponential window multiplication + Fourier transform + phase
correction using the processing parameters PHCO and PHC1.

EM Exponential window multiplication of FID.

FMC Fourier Transform + magnitude calculation.

FP Fourier Transform + phase correction using the processing
parameters PHCO and PHCA1.

FT Fourier Transform.

GENFID (eno)

Create FID from processed data.

GF Gaussian window multiplication + Fourier Transform.

GFP Gaussian window multiplication + Fourier Transform + phase
correction using the processing parameters PHCO and PHC1.

GM Gaussian window multiplication.

HT Hilbert Transform.

IFT Inverse Fourier Transform.

MC Magnitude calculation.

PK Phase correction using the processing parameters PHCO and
PHC1.

PS Power spectrum calculation.

QSIN Squared sine window multiplication.

SAB Spline baseline correction using base_info file.

SINM Sine window multiplication.

SINO Calculate signal to noise ratio.

SREF Automatic spectral referencing using 2Hlock parameters.

™ Trapezoidal window multiplication.

H146194_10_010

29/122

Inventory of AU Macros and Bruker Library Functions

Macro Description

TRF Processing of the raw data according to the currently defined
processing parameters.

TRFP Processing of the processed data according to the currently
defined processing parameters.

UWM User-defined window multiplication.

Table 2.9: 1D Processing Macros

Note that 1D processing macros which access raw data, execute the corresponding

command with the option same. For example, FT executes the command ft same. This
n option prevents the command from being interactive. When it encounters a command that

would display a dialog box and wait for an answer, it automatically continues with the answer

that would have been the default of the dialog box.

210 Peak Picking, Integration and Miscellaneous Macros

Macro Description

PP Peak picking according to currently set processing parameters.

PPH Like PP, but with a peak histogram along the listing.

PPP Like PP, but the output is written to the file peaklist in the current
processing data directory (PROCNO).

PPJ Like PP, but store peaks in JCAMP-DX format

LI List integrals according to the currently defined intrng file. The
macro ABS can be used to create an intrng file.

LIPP List integrals and all peaks in the integral ranges.

LIPPF Like LIPP, but works always on the full spectrum.

PP2D Perform peak picking on a 2D data set.

RMISC (typ, file) |Read a file from one of the following list types: base_info,
baslpnts, intrng, peaklist or reg.

WMISC (typ, file) |Write a base_info, baslpnts, intrng, peaklist or reg file to its lists
directory.

Table 2.10: Peak Picking, Integration and Miscellaneous Macros

2.1 Macros for Algebraic Operations on Data sets

Macro Description

ADD Add 2nd and 3rd data set and put the result into the current data set. The
3rd data set is multiplied by DC.

ADDFID Add two FIDs multiplying one of them with DC.

ADDC Add the constant DC to the current data set.

AND Put logical "and" of 2nd and 3rd data set into the current data set.

30/122 H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro Description

DIV Divide 2nd and 3rd data set and put the result into the current data set.
The 3rd data set is multiplied by DC.

DT Calculate the first derivative of the data set.

FILT Apply a software digital filter to the current data set.

LS Left shift spectrum or FID by NSP points.

MUL Multiply 2nd and 3rd data set and put the result into the current data set.
The 3rd data set is multiplied by DC.

MULC Multiply the current data set with DC.

NM Negate current spectrum.

RS Right shift spectrum or FID by NSP points.

RV Reverse the spectrum.

ZF Zero the spectrum (1r,1i).

7P Zero the first NZP points of the spectrum or FID.

Table 2.11: Macros for Algebraic Operations on Data sets

212 Deconvolution Macros

Macro Description

GDCON Gaussian deconvolution of the peaks automatically picked according to
the currently set processing parameters.

LDCON Lorentzian deconvolution of the peaks automatically picked according to
the currently set processing parameters.

MDCON Mixed Gaussian/Lorentzian deconvolution of the peaks in the peaklist file.
The peaklist file can be created with the ppp command and it can be
modified using the edmisc command.

Table 2.12: Deconvolution Macros

213 2D Processing Macros

Macro Description

ABS1 Baseline correction in F1 dimension.

ABS2 Baseline correction in F2 dimension.

ABSD1 Baseline correction in F1 dimension using the DISNMR algorithm.
ABSD2 Baseline correction in F2 dimension using the DISNMR algorithm.
ABSOT1 Trapezoidal baseline correction in F1 dimension using a slightly different

algorithm than abst1.

ABSOT2 Trapezoidal baseline correction in F2 dimension using a slightly different
algorithm than abst2.

ABST1 Trapezoidal baseline correction in F1 dimension using the processing
parameters ABSF1, ABSF2, SIGF1, SIGF2.

H146194_10_010 31/122

Inventory of AU Macros and Bruker Library Functions

Macro Description

ABST?2 Trapezoidal baseline correction in F2 dimension using the processing
parameters ABSF1, ABSF2, SIGF1, SIGF2.

ADD2D Add the processed data of the 2nd data set to the current data set.

ADDSER Add the raw data of the 2nd data set to the current data set.

BCM1 Baseline correction of all columns using the coefficients that were
obtained with a manual 1D baseline correction.

BCM2 Baseline correction of all rows using the coefficients that were obtained
with a manual 1D baseline correction.

LEVCALC Calculate the levels for the contour representation of the 2D matrix.

PTILT Tilt the 2D matrix by an arbitrary angle.

PTILT1 Tilt the 2D matrix along its central vertical line.

REV1 Reverse the spectrum in F1 dimension.

REV2 Reverse the spectrum in F2 dimension.

SUB1 Subtract 1D spectrum in F1 dimension (no change in sign).

SUB2 Subtract 1D spectrum in F2 dimension (no change in sign).

SUB1D1 Subtract 1D spectrum in F1 dimension.

SUB1D2 Subtract 1D spectrum in F2 dimension.

SYM Symmetrize COSY spectrum.

SYMA Symmetrize phase sensitive COSY spectrum.

SYMJ Symmetrize J-resolved spectrum.

TILT Tilt J-resolved spectrum by an internally calculated angle.

XF1 Fourier transform in F1 dimension.

XF1P Phase correction in F1 dimension using the processing parameters
PHCO and PHC1.

XF2 Fourier transform in F2 dimension.

XF2P Phase correction in F2 dimension using the processing parameters
PHCO and PHC1.

XFB Fourier transform in both dimensions.

XFBP Phase correction in both dimensions.

XF1M Magnitude calculation in F1 dimension.

XF2M Magnitude calculation in F2 dimension.

XFBM Magnitude calculation in both dimensions.

XF1PS Power spectrum in F1 dimension.

XF2PS Power spectrum in F2 dimension.

XFBPS Power spectrum in both dimensions.

XHT1 Hilbert Transform in F1 dimension.

XHT2 Hilbert transform in F2 dimension.

32/122

H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro Description

XIF1 Inverse Fourier transform in F1 dimension.

XIF2 Inverse Fourier transform in F2 dimension.

XTRF 2D processing according to processing parameter flags (starts always
on the raw data).

XTRF2 2D processing according to F2 processing parameter flags only (starts
always on the raw data).

XTREFP 2D Processing according to the processing parameter flags.

XTRFP1 2D processing according to the F1 processing parameter flags only.

XTRFP2 2D processing according to the F2 processing parameter flags only.

ZERT1 Zero a region of each column (F1). The region is determined by ABSF1/
ABSF2 (first column) and SIGF1/SIGF2 (last column).

ZERT2 Zero a region of each row (F1). The region is determined by ABSF1/

ABSF2 (first row) and SIGF1/SIGF2 (last row).

GENSER (eno) |Create a 2D series file from the processed data.

Table 2.13: 2D Processing Macros

Note that 2D processing macros which access raw data, execute the corresponding
command with the option same. For example, XFB executes the command xfb same.

214 Macros Reading and Writing Projections etc.

Macro Description

F1SUM(il,1i2, pno) Read sum of columns from i1 to i2 into the 1D
processing number pno.

F2SUM(il,1i2,pno) Read sum of rows from i1 to i2 into the 1D
processing number pno.

F1DISCO(il1,i2,13,pno) Read disco projection between i1 and i2 columns
with reference row i3 into the 1D processing
number pno.

F2DISCO(i1,12,13,pno) Read disco projection between i1 and 12 rows
with reference column i3 into the 1D processing
number pno.

F1PROJN (i1, 12, pno) Read partial negative projection between columns

i1 and i2 into the 1D processing number pno.

F1PROJP (11,12, pno) Read partial positive projection between columns
i1 and 12 into the 1D processing number pno.

F2PROJN (i1, 12, pno) Read partial negative projection between rows 11
and i2 into the 1D processing number pno.

F2PROJP (11,12, pno) Read partial positive projection between rows i1
and i2 into the 1D processing number pno.

H146194_10_010 33/122

Inventory of AU Macros and Bruker Library Functions

Macro Description

RHNP (pno) Read horizontal (F2) negative projection into the
1D processing number pno.

RHPP (pno) Read horizontal (F2) positive projection into the 1D
processing number pno.

RSC(il,pno) * Read column i1 of 2D into the 1D processing
number pno.

RSR(il,pno) * Read row i1 of 2D into the 1D processing number
pno.

RVNP (pno) * Read vertical (F1) negative projection into the 1D
processing number pno.

RVPP (pno) * Read vertical (F1) positive projection into the 1D
processing number pno.

RSER(il, eno,pno) * Read row i1 of 2D raw data into the eno and
pno.

RSER2D (direc, 1il,eno) * Read plane number i1 in direction direc of 3D raw
data into the eno.

Write a column back into position i1 of a 2D data
WSC (i1, pno, eno, nam,usr,ds |setdefined by pno, eno, nam, usr and dsk.
k) *

Write a row back into position 11 of a 2D data set
WSR (i1, pno, eno, nam,usr,ds |defined by pno, eno, nam, usr and dsk.
k) *

Write an FID back into position i1 of a 2D raw
WSER (i1, nam, eno, pno,dsk,u |data defined by eno, pno, nam, dsk and usr.
sr)*

Write a processed FID back into position i1 of a
WSERP (11, nam, eno, pno, dsk, |2D raw data defined by eno, pno, nam, dsk and
usr) usr.

Table 2.14: Macros Reading and Writing Projections etc.

215 3D Processing Macros

Macro Description

TF3 (flag,dsk) Fourier transform in F3 dimension. The f1ag can be "y" or "n
and determines whether the imaginary parts are stored or not.
The processed data are stored on disk unit dsk.

TF2 (flag) Fourier transform in F2 dimension (f1ag as in TF3).
TF1 (flag) Fourier transform in F1 dimension (£1ag as in TF3).
TE3P (flag) Phase correction in F3 dimension (flag as in TF3).
TF2P (flag) Phase correction in F2 dimension (f1ag as in TF3).
TF1P (flag) Phase correction in F1 dimension (f1ag as in TF3).
TABS3 Automatic baseline correction in F3 dimension.

34 /122 H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro Description

TABS2 Automatic baseline correction in F2 dimension.
TABS1 Automatic baseline correction in F1 dimension.
R12 (i1, pno) Read F1-F2 plane into a new procno.

R13 (i1, pno) Read F1-F3 plane into a new procno.
R23(il,pno) Read F2-F3 plane into a new procno.

Table 2.15: 3D Processing Macros

2.16 Spectral Width Calculation Macros

Macro Description

GETLIM Get frequency of leftmost and rightmost peak from a 1D spectrum
and adjust the sweep width of the 1D spectrum to the difference +
10%.

GETLCOSY Get frequency of leftmost and rightmost peak from a 1D spectrum
and adjust the sweep width of a COSY spectrum to the difference
+ 10%.

GETLXHCO Get frequency of leftmost and rightmost peak from two 1D

spectra and adjust the sweep width of an X-H correlation
spectrum to the difference + 10%.

GETLJRES Get frequency of leftmost and rightmost peak from a 1D spectrum
and adjust the sweep width of a J-RESolved spectrum to the
difference + 10%.

GETLINV Get frequency of leftmost and rightmost peak from a 1D spectrum
and adjust the sweep width of an INVerse spectrum to the
difference + 10%.

Table 2.16: Spectral Width Calculation Macros

217 Plot Editor Related Macros

XWP_LP * Create a parameter listing for a plot with
the plot editor.

XWP PP * Create a peak picking listing for a plot with
the plot editor.

AUTOPLOT * Plot the current data set according to the
plot editor layout defined by the processing
parameter LAYOUT.

AUTOPLOT TO FILE(file name) * |as AUTOPLOT except that the plot is not
sent to the printer but stored in the file
file name in postscript format.

DECLARE PORTFOLIO * Obsolete in TopSpin = 1.3.

CREATE PORTFOLIO (file name) * Create the TopSpin portfolio file name.
ADD TO PORTFOLIO (disk, user, Add the data set that is specified with the
name, expno, procno) * arguments to the portfolio created with

CREATE_PORTFOLIO.

H146194_10_010 35/122

Inventory of AU Macros and Bruker Library Functions

ADD CURDAT TO PORTFOLIO * Add the current data set to the portfolio
created with CREATE_PORTFOLIO
CLOSE_PORTFOLIO * Close the definition for the portfolio created

with CREATE_PORTFOLIO. Must be used
before AUTOPLOT_* macros.

AUTOPLOT WITH PORTFOLIO * Plot the data set(s) defined in the portfolio
created with CREATE_PORTFOLIO
according to the layout defined by the
parameter LAYOUT.

as AUTOPLOT_WITH_PORTFOLIO
AUTOPLOT WITH PORTFOLIO TO FILE (|except thatthe plotis not sent to the printer
file name) * but store in the postscript file file name.

Table 2.17: Plot Editor Related Macros

218 Macros Converting Data sets

Macro Description

FROMJDX (....) |Converta JCAMP-DX file to TopSpin data format.

*

TOJDX(....) * |Converta data setto JCAMP-DX 6.0 format.
TOJDX5(....) *|Converta data set to JCAMP-DX 5.0 format.

JCONV (....) * |Converta Jeol data set to Bruker TopSpin format.
VCONV (....) * |Converta Varian data set to Bruker TopSpin format.

Table 2.18: Macros Converting Data sets

219 Macros to Execute Other AU Programs, TopSpin Macros or

Commands

Macro Description

CPR exec(....) * |C-function for executing special TopSpin commands.

WAIT UNTIL(....) |Holdthe AU program until the specified date and time.

*

XAUA Execute the acquisition AU program stored in AUNM (eda).
The next line in the AU program is executed after the AU
program AUNM has finished.

XAUP Execute the processing AU program stored in AUNMP (edp).

The next line in the AU program is immediately executed after
the AU program AUNMP has been started.

XAUPW Execute the processing AU program stored in AUNMP (edp).
Like XAUP, but now the next line in the AU program is
executed after the AU program AUNMP has finished.

XAU (prog, arg) Execute the AU program prog with the wait option.
XCMD (cmd) * Execute the TopSpin command for which no dedicated macro
exists.

36/122 H146194_10_010

Inventory of AU Macros and Bruker Library Functions

Macro

Description

XMAC (mac)

Execute a TopSpin macro mac.

Table 2.19: Macros to Execute Other AU Programs, TopSpin Macros or Commands

Bruker Library Functions

Macro

Description

CalcExpTime () *

Calculate the experiment time for the current experiment.

PrintExpTime (....) *

Print the experiment time for the current experiment.

GetNmrSuperUser () *

Get the name of the current TopSpin superuser.

getdir(....) * Get all file names and/or directory names within a
directory.

freedir(....) * Free memory allocated by getdir.

dircp(....) * Copy afile.

dircp err(il) *

Return the error message that corresponds to the error
return value of a di rcp function call.

fetchstorpl(....) * Read or store one or several plot parameters.

FileSelect (....) * Display a list of files and allow to select a file.

gethighest (....) * Return the next highest unused experiment number of a
data set.

getParamDirs (...) List all directories specified for key.

getParfileDirForRead (

L)

Determines path name of list file to be read.

getParfileDirForWrite
(..) 7~

Determines path name of list file to be written.

getstan(....) * Return the path name to the user’s current experiment
directory.

GetTsVersionDot (....) | Return the current version and patchlevel of TopSpin.

*

mkudir (....) * Create a directory including missing sub directories..

PathXWinNMR () *

A class of functions which return path names to certain
TopSpin directories.

pow next (il) *

Round i1 to the next larger power of two.

Proc err(....) *

Show a message in a TopSpin dialog window.

Show_ status (text) *

Show a string in the status line of TopSpin.

showfile (file) *

Show the contents of a file in a TopSpin window.

sleep(il) *

Pause in an AU program for i1 seconds.

unlinkpr(....) *

Delete all processed data files (1r, 1i, 2rr, 2ii etc.) of a
data set.

Table 2.20: Bruker Library Functions

H146194_10_010

371122

Inventory of AU Macros and Bruker Library Functions

2.21 Macros for Loop Control
Macro Description
TIMES (n) Execute the statements in the loop n times.
TIMES2 (n) Execute the statements in the loop n times. Normally used for the
second level of nested loops.
TIMES3 (n) Execute the statements in the loop n times. Normally used for the
third level of nested loops.
END End of a loop.
STOP Stop the AU program with the return value of AUERR.
STOPMSG ("text") |Stop the AU program with the return value of AUERR and display
the message "text".
Table 2.21: Macros for Loop Control
2.22 Macros to Return from an AU Program

Macro Description

ABORT Abort the AU program or any of its subroutines with the return
value of -1.

ERRORABORT Return from an AU program or any of its subroutines with the value
of AUERR if it is less than 0.

QUIT Return from an AU program with the value of AUERR. QUIT is

usually the last statement of the AU program code.

QUITMSG (text)

Print the text message and then return from the AU program with
the value of AUERR. This is an alternative to QUIT.

STOP

Stop the AU program with the return value of AUERR.

STOPMSG ("text")

Stop the AU program with the return value of AUERR and display
the message "text".

Table 2.22: Macros to Return from an AU Program

38/122

H146194_10_010

Detailed Description of AU Macros

3 Detailed Description of AU
Macros

3.1 General AU Macros

This chapter contains a description of all general AU macros which can be used for various
purposes.

3.11 CPR_exec

NAME

CPR_exec - Generic function for executing TopSpin commands.
SYNTAX

CPR exec (const char *command, int mode);
DESCRIPTION

CPR_exec is a generic function which can be used for executing TopSpin commands in AU.
The first argument of CPR_exec is a string containing a TopSpin command. The second
argument must be one of the following values:

WAIT TERM - Waits for the command to finish, then start the next command.
WAIT START - Waits for the command to start, then start the next command.
CONT_EX - Starts the command and immediately start the next command.

Practically all dedicated macros which execute a TopSpin command call CPR exec with
WAIT TERM. For example, the macro FT is defined as:

FT {SETCURDATA AUERR=CPR exec("ft same",WAIT TERM);}

The CPR_exec return value allows you to check for successful execution. The return value of
CPR exec is NORM TERM (=0) for normal termination or ERR TERM (=-1) for error
termination.

WAIT START or CONT EX can be used if asynchronous execution is required. For example,
the AU macro XAUP uses WAIT START to allow data simultaneous processing and
acquisition in automation.

Note that using WAIT START and CONT EX does not allow you to check the return value
for successful execution.

For most commands a dedicated AU macro is available, like zG for zg and FT for ft. If you
want to use TopSpin commands for which no dedicated macro exist, e.g. editor commands or
commands with special arguments, then you can use the generic macro XxCMD which takes
only one argument, the TopSpin command and is started with WAIT TERM. XCMD is defined
as:

XCMD (cmd) {SETCURDATA AUERR=CPR exec (cmd,WAIT TERM) ;}

In fact, the only reason to use CPR_exec explicitly is to start a command with WAIT START
or CONT_EX, i.e. to run commands simultaneously.

H146194_10_010 39/122

Detailed Description of AU Macros

Note that dedicated macros and XCMD call SETCURDATA before they do their actual task.
n This ensures that they operate on the current AU data set. If you use CPR_exec explicitly, it

is recommended to precede it with SETCURDATA.

Note that in the example below, CPR_exec is preceded by the macro zG which implicitly
calls SETCURDATA.

In summary:

» Use dedicated AU macros whenever you can.

» Use XCMD when no dedicated macro is available.

¢ Use CPR_exec when you want to use WAIT START or CONT EX.
CPR exec is part of the uni library which is delivered with TopSpin.

EXAMPLE

The following AU program gets the foreground data set, runs an acquisition, starts the Fourier
Transform and, after this has started, continues an acquisition on the next experiment
number 10 times in a row:

TIMES (10)
z2G
CPR exec ("ft", WAIT START);
IEXPNO

END

QUIT

SEE ALSO

XCMD [41] - Generic macro to execute commands for which no dedicated macro exists
SETCURDATA - make the current AU data set available for subsequent AU statements.

3.1.2 XAU

NAME
XAU - Execute the specified AU program and wait.

SYNTAX
XAU (prog, argqg)

DESCRIPTION

XAU is a general macro to execute (and, if necessary compile) AU programs. The macro
takes two arguments:

1. prog - The AU program to be executed.
2. arg —The arguments to pass to the AU program.
The second argument can be:
« - No arguments are propagated.
« “2H 2 1 yes” — Propagate the four arguments as specified
* arglist — Propagate all arguments from the calling AU program
SEE ALSO

40/122 H146194_10_010

Detailed Description of AU Macros

XCMD [» 41]
313 XCMD
NAME
XCMD - Generic function for executing TopSpin commands.
SYNTAX
XCMD (const char* command)
DESCRIPTION

XCMD is a general macro to execute TopSpin commands for which no dedicated macro
exists. For most TopSpin commands a dedicated macro does exist and we strongly
recommend to Use dedicated macros whenever available!

Note that XCMD executes CPR_exec with the option WAIT TERM. If you want to use the
options CONT EX or WAIT START, you must use CPR_exec.

If you want to check whether or not XxCMD was executed successfully, you can check the
value of AUERR (NORM TERM or ERR TERM).

EXAMPLE

The following AU program gets the foreground data set, opens the acquisition parameter
editor (eda) and runs an acquisition and Fourier transform:

XCMD ("sendgui eda")
Z2G

FT

QUIT

SEE ALSO
CPR_exec [39] - C-function for executing special TopSpin commands.

314 XAUA

NAME

XAUA - Execute the acquisition AU program of the current data set.
SYNTAX

XAUA

DESCRIPTION

XAUA executes (and, if necessary compiles) the AU program that is specified in the
parameter AUNM of the current data set and waits until that AU program has terminated.

SEE ALSO
XCMD [» 41], XAU [40]

3.1.5 XAUP

NAME

H146194_10_010 41 /122

Detailed Description of AU Macros

XAUP - Execute the processing AU program of the current data set and continue.
SYNTAX

XAUP

DESCRIPTION

XAUP executes (and, if necessary compiles) the AU program that is specified in the
parameter AUNMP of the current data set. The original AU program continues to run after the
processing AU program has been started so that both AU programs run in parallel.

SEE ALSO
XCMD [41], XAU [40], XAUPW |» 42]

See also
XAUA [41]

3.1.6 XAUPW

NAME

XAUP - Execute the processing AU program of the current data set and wait.
SYNTAX

XAUA

DESCRIPTION

XAUA executes (and, if necessary compiles) the AU program that is specified in the
parameter AUNM of the current data set and waits until that AU program has terminated.

SEE ALSO
XCMD [41], XAU [40], XAUP [41]

31.7 WAIT_UNTIL

NAME
WAIT UNTIL - Hold the AU program until the specified date and time.

SYNTAX
int WAIT UNTIL(int hour, int minute, int day, int month)

DESCRIPTION
The function WAIT UNTIL waits in an AU program until the specified date has been reached.
The variables are internally converted to seconds. Every sixty seconds, the function checks
whether the current date matches with the selected date. This function basically allows to
program an event or command to start at a certain date rather than waiting for a certain time
until something is executed.

EXAMPLE
Wait in the AU program until the 31st of October, 6 pm, and then continue:

WAIT UNTIL(18,0,31,10)
SEE ALSO

sleep [95] - Pause in an AU program for a certain number of seconds.

421122 H146194_10_010

Detailed Description of AU Macros

3.2 TopSpin Interface Functions
AU programs are normally used to execute a series of acquisition or processing commands.
For these commands you can use dedicated AU macros like zG and FT. Less common is the
use of TopSpin Java interface commands in AU programs. You can, however, do that with
the XCMD or CPR_exec macros and the command sendgui. Two examples:
« Display the acquisition parameters
— XCMD ("sendgui eda")
« Perform a vertical reset of the current data set
— CPR_exec("sendgui .vr", WAIT START)
This can be used for all TopSpin interface commands like data window tabs, menu entries
and toolbar buttons. Here are some examples:
TopSpin Interface TopSpin Command AU statement
Menus
File => reopen reopen XCMD ("sendgui reopen")
File => Close close XCMD ("sendgui close™)
Window => New Window newwin XCMD ("sendgui newwin")
Data Window Tabs
Spectrum spec XCMD ("sendgui spec")
ProcPars edp XCMD ("sendgui edp")
Title edti XCMD ("sendgui edti")
Toolbar buttons
§-| vr XCMD ("sendgui .vr")
@- .Zi XCMD ("sendgui .zi")
I}l\.-.- .ov XCMD ("sendgui .ov")
Table 3.1: TopSpin interface commands
3.3 Macros Changing the Current AU Data set
This chapter contains a description of all AU macros which can be used to change the current
AU data set, i.e. the data set on which subsequent AU statements operate.
3.31 SETCURDATA
NAME
SETCURDATA - Makes the current AU data set available for subsequent AU statements .
SYNTAX

SETCURDATA

H146194_10_010 43 /122

Detailed Description of AU Macros

DESCRIPTION

SETCURDATA makes the current AU data set, i.e. the data set defined by the data path
variables disk, user, type, name, expno and procno, available for subsequent AU commands.
Normally, you do not need to enter SETCURDATA because it is automatically called by macros
which operate on data sets before they perform their actual task. Furthermore, the macros
DATASET and GETDATASET, which change the current AU data set, automatically call
SETCURDATA after they performed their actual task. In some cases, however, SETCURDATA
must be specified explicitly in the AU program. For example, the macros IEXPNO and
IPROCNO change the current AU data set, but do not call SETCURDATA. If they are followed
by a CPR_exec or any C-statement which access the current AU data set, then you must
precede that statement with SETCURDATA.

EXAMPLE

This example shows the part of the library AU program multizg which calculates the total
experiment time of all acquisitions performed by this AU program:

int expTime;

static void PrintExpTime () ;

expTime = 0;

TIMES (i1)
SETCURDATA;
expTime += CalcExpTime () + 4;
TIEXPNO;

END
DEXPNO;

QUIT

n Note that IEXPNO is followed by SETCURDATA in the next cycle of the loop.

SEE ALSO
DATA SET [+ 44] - Sets the current AU data set.
IEXPNO [46] - Increases the experiment number by one.

3.3.2 DATASET

NAME

DATASET - Sets the current AU data set.
SYNTAX

DATASET (char *name, int expno, int procno, char *disk, char *user)
DESCRIPTION

The macro DATASET sets the current AU data set. All data path variables name, expno,
procno, disk and user must be specified as arguments. Subsequent AU commands will
operate on this dataset.

441122 H146194_10_010

Detailed Description of AU Macros

EXAMPLE

The following AU program first gets the foreground data set, then selects a new dataset and
runs an acquisition:

char newname[20];
strcpy (newname, "glycerine");
DATASET (newname, expno, 3, disk, "peter")
ZG
QUIT
The data path variables in this example are entered in the following way:
» expno and disk keep the values of the current data set.
* name gets the value of newname, a variable defined in this AU program.

» procno and user get the values 3 and peter, respectively, which are entered as
constants.

SEE ALSO
GETDATASET [46] - Prompts the user to specify a new data set.
DATASET?2 [+ 45] - Sets the second data set.
IEXPNO [46] - Increases the experiment number by one.

3.3.3 DATASET2, DATASET3

NAME
DATASET?2 - Sets the second AU dataset DATASET3 - set the third AU data set.
SYNTAX
DATASETZ2 (char *name, int expno, int procno, char *disk, char *user)
DATASET3 (char *name, int expno, int procno, char *disk, char *user)
DESCRIPTION
The macro DATASET2 sets the second AU data set. The current (first) AU dataset is not
affected by this macro. DATASET? is typically used in combination with algebra macros, like
ADD or MUL, which operate on the second and third data set.
EXAMPLE
The following AU program gets the foreground dataset, adds the spectra of the next
processing number and the one after that and stores the result into the current dataset:
DATASETZ2 (name, expno, procno+l, disk, user)
DATASET3 (name, expno, procno+2, disk, user)
ADD
QUIT
SEE ALSO

DATASET [44] - Sets the current AU data set.
GETDATASET [46] - Prompts the user to specify a new data set.

H146194_10_010 45/122

Detailed Description of AU Macros

3.34 GETDATASET

NAME
GETDATASET - Prompts the user to specify a new dataset.
SYNTAX
GETDATASET
DESCRIPTION
The macro GETDATASET prompts the user to specify a new dataset. A dialogue is opened
and the user is requested to enter the data path variables name, expno, procno, user and
disk. Subsequent AU commands will operate on this data set. GETDATASET can be used
anywhere in an AU program but, since it requires user input, should not be used in fully
automated sequences.
NOTE
GETDATASET is not used very often. In AU programs, data sets are usually changed without
user interaction, e.g. with the macros DATASET, IEXPNO etc.
EXAMPLE
The following AU program gets the foreground data set, prompts the user to specify a new
data set and then processes this data set:
GETDATASET
EFP
QUIT
SEE ALSO

DATASET [+ 44] - Sets the current AU data set.
IEXPNO [46] - Increase the experiment number by one.
IPROCNO [+ 48] - Increase the processing number by one.

3.3.5 IEXPNO

NAME
TEXPNO - Increases the experiment number by one.

SYNTAX
IEXPNO

DESCRIPTION
The macro TEXPNO increases the experiment number of the current AU data set by one. In
fact, the value of the data path variable expno is incremented by one. Subsequent macros
will operate on this new expno. IEXPNO is typically used in AU programs which run a series
of acquisitions on data sets with the same name and successive expnos.

EXAMPLE

The following AU program gets the foreground data set and runs acquisitions on eight
successive expnos:

46 /122 H146194_10_010

Detailed Description of AU Macros

TIMES (8)
zG
IEXPNO

END

QUIT

NOTE

TIEXPNO must be followed by a SETCURDATA if the AU program continues with an explicit
CPR_exec or C-statement (see SETCURDATA [43]).

SEE ALSO
DEXPNO [+ 47] - Decreases the experiment number by one.
REXPNO [48] - Sets the experiment number to the specified value.
IPROCNO [+ 48] - Increases the processing number by one.
DATA SET [44] - Sets the current AU data set.

3.3.6 DEXPNO

NAME
DEXPNO - Decreases the experiment number by one.

SYNTAX
DEXPNO

DESCRIPTION
The macro DEXPNO decreases the experiment number of the current AU data set by one. In
fact, the value of the data path variable expno is decremented by one. Subsequent macros
will operate on this new expno. DEXPNO is typically used after a loop which includes an
IEXPNO at the end, to revert the effect of the last (unnecessary) IEXPNO.

EXAMPLE

The following AU program gets the foreground data set, runs acquisitions on eight successive
expnos and displays the data of the last expno:

TIMES (8)
Z2G
IEXPNO

END

DEXPNO

VIEWDATA

QUIT

Note that DEXPNO must be followed by a SETCURDATA if the AU program continues with an
explicit CPR_exec or C-statement (see SETCURDATA [+ 43]).

SEE ALSO
IEXPNO [46] - Increases the experiment number by one.

H146194_10_010 47 /122

Detailed Description of AU Macros

REXPNO [48] - Sets the experiment number to the specified value.
DPROCNO [49] - Decreases the processing number by one.

3.3.7 REXPNO

NAME
REXPNO - Sets the experiment number to the specified value.

SYNTAX
REXPNO (int number)

DESCRIPTION
The macro REXPNO sets the experiment number of the current AU data set to the specified
value. In fact, the value of the data path variable expno is set. Subsequent macros will
operate on this new expno.

EXAMPLE

The following AU program gets the foreground data set, runs acquisitions on eight successive
expnos then sets the current AU data set back to the first expno and Fourier transforms it:

il = expno;
TIMES (8)
ZG
TEXPNO
END
REXPNO (11)
FT
QUIT

Note that REXPNO must be followed by a SETCURDATA if the AU program continues with an
explicit CPR_exec or C-statement (see SETCURDATA [i 43]).

SEE ALSO
IEXPNO [46] - Increases the experiment number by one.
DEXPNO [+ 47] - Decreases the experiment number by one.
RPROCNO [50] - Sets the processing number to the specified value.

3.3.8 IPROCNO

NAME
TPROCNO - Increases the processing number by one.

SYNTAX
IPROCNO

48 /122 H146194_10_010

Detailed Description of AU Macros

DESCRIPTION

The macro TPROCNO increases the processing number of the current AU data set by one. In
fact, the value of the data path variable procno is incremented by one. Subsequent macros
will operate on this new procno. TPROCNO is typically used in an AU program which
processes a series of data sets with same name and expno and successive procnos.

EXAMPLE
The following AU program runs Fourier transforms on eight successive procnos:
TIMES (8)
ET
IPROCNO
END
QUIT

Note that IPROCNO must be followed by a SETCURDATA if the AU program continues with
an explicit CPR_exec or C-statement (see SETCURDATA [43]).

SEE ALSO
DPROCNO [49] - Decreases the processing number by one.
RPROCNO [50] - Sets the processing number to the specified value.
IEXPNO [46] - Increases the experiment number by one.

3.3.9 DPROCNO

NAME
DPROCNO - Decreases the processing number by one.

SYNTAX
DPROCNO

DESCRIPTION
The macro DPROCNO decreases the processing number of the current AU data set by one. In
fact, the value of the data path variable procno is decremented by one. Subsequent macros
will operate on this new procno. DPROCNO is typically used after a loop which includes an
IPROCNO at the end, to revert the effect of the last (unnecessary) IPROCNO.

EXAMPLE

The following AU program gets the foreground data set, runs a Fourier transform on eight
successive procnos and displays the data of the last procno:

TIMES (8)
FT
IPROCNO

END

DPROCNO

VIEWDATA

QUIT

H146194_10_010 49 /122

Detailed Description of AU Macros

Note that DPROCNO must be followed by a SETCURDATA if the AU program continues with
an explicit CPR_exec or C-statement (see SETCURDATA [+ 43]).

SEE ALSO
IPROCNO [+ 48] - Decreases the experiment number by one.
RPROCNO [50] - Sets the processing number to specified value.
DEXPNO [+ 47] - Decreases the experiment number by one.

3.3.10 RPROCNO

NAME
RPROCNO - Sets the processing number to the specified value.

SYNTAX
RPROCNO (int number)

DESCRIPTION
The macro RPROCNO changes the current AU data set by setting the processing number to
the specified value. In fact, the value of the data path variable procno is set. Subsequent
macros will then operate on this new procno.

EXAMPLE

The following AU program gets the foreground data set and runs a Fourier transform on eight
successive procnos.Then the current AU data set is set back to the first procno which is then
phase corrected:

il = procno;
TIMES (8)

FT

IPROCNO
END
RPROCNO (11)
APK
QUIT

Note that RPROCNO must be followed by a SETCURDATA if the AU program continues with
an explicit CPR_exec or C-statement (see SETCURDATA [+ 43]).

SEE ALSO
IPROCNO [+ 48] - Increases the processing number by one.
DPROCNO [49] - Decreases the processing number by one.
REXPNO [48] - Sets the experiment number to the specified value.

50/122 H146194_10_010

Detailed Description of AU Macros

3.3.11 VIEWDATA

NAME
VIEWDATA - Shows the current AU program data set in new window .
SYNTAX
VIEWDATA
DESCRIPTION
The macro VIEWDATA shows the current AU program data set in a new window or activates
the window that contains this data set. VIEWDATA is used whenever the current AU data set
is changed within the AU program, i.e. with DATA SET, IEXPNO etc. and this data set must
be shown in TopSpin.
EXAMPLE
The following AU program gets the foreground data set, increases the processing number
and performs a Fourier transform storing the spectrum in this processing number. The
spectrum is then shown in TopSpin:
IPROCNO
FT
VIEWDATA
QUIT
SEE ALSO

VIEWDATA _SAMEWIN [51] - Shows the current data set in the current window.
GETDATA SET [46] - Prompts the user to specify a new data set.

DATA SET [+ 44] - Sets the current AU data set.

IEXPNO [46] - Increases the experiment number by one.

IPROCNO [+ 48] - Increases the processing number by one.

3.3.12 VIEWDATA_SAMEWIN

NAME
VIEWDATA SAMEWIN - Shows the current AU program data set in the current window.

SYNTAX
VIEWDATA SAMEWIN

DESCRIPTION

The macro VIEWDATA SAMEWIN shows the current AU program data set in the current
window that contains this data set. It is used as an alternative to VIEWDATA.

EXAMPLE

The following AU program gets the foreground data set, increases the processing number
and performs a Fourier transform storing the spectrum in this processing number. The
spectrum is then shown in TopSpin:

IPROCNO

H146194_10_010 51/122

Detailed Description of AU Macros

FT
VIEWDATA SAMEWIN
QUIT

SEE ALSO
VIEWDATA [51] - Shows the current data set in new window.
GETDATA SET [46] - Prompts the user to specify a new data set.
DATA SET [44] - Sets the current AU data set.
IEXPNOQO [46] - Increases the experiment number by one.
IPROCNO [48] - Increases the processing number by one.

3.4 Macros Copying Data sets

This chapter contains a description of all AU macros which can be used to copy the current
AU data set or parts of it to a new data set.

3.4.1 WRA

NAME
WRA - Copies the raw data to the specified experiment number.

SYNTAX
WRA (int expno)
DESCRIPTION
The macro WRA copies the raw data, including the acquisition and processing parameters of
the current AU data set to a new experiment number. It does not copy the processed data.
EXAMPLE
The following AU program gets the foreground data set and copies the raw data to eight
successive experiment numbers , starting with expno 11:
il = 11;
TIMES (8)
WRA (i1)
114+;
END
QUIT
SEE ALSO
WRP [52] - Copies the processed data to the specified processing number.
WRPA [53] - Copies the raw and processed data to the specified data set.
3.4.2 WRP
NAME

WRP - Copies the processed data to the specified processing number.

52 /122 H146194_10_010

Detailed Description of AU Macros

SYNTAX
WRP (int procno)

DESCRIPTION

The macro WRP copies the processed data, including the processing parameters of the
current AU data set, to the specified processing number.

EXAMPLE

The following AU program gets the foreground data set and copies the processed data to
eight successive processing numbers, starting with procno 11:

il = 11;

TIMES (8)
WRP (11)
il++;

END

QUIT

SEE ALSO
WRA [52] - Copies the raw data to the specified experiment number.
WRPA [53] - Copies the raw and processed data to the specified data set.

3.4.3 WRPA

NAME
WRPA - Copies the raw and processed data to the specified data set.

SYNTAX

WRPA (char *name, int expno, int procno, char *disk, char *user)

DESCRIPTION

The macro WRPA copies the raw and processed data of the current AU data set to the
specified data set. WRPA takes 5 arguments, name, expno, procno, disk and user, i.e. the
data path variables which define the data set path. You can set one, several, or all of these
variables to new values in order to define the destination data set. You can, for instance,
archive your data to an external medium by changing the value of the variable disk and
leaving the other path variables the same.

EXAMPLE
The following AU program copies the current data set to an external disk drive E:/:
WRPA (name, expno, procno, "E:/", user)

QUIT

SEE ALSO
WRA [52] - Copies the raw data to the specified experiment number.
WRP [+ 52] - Copies the processed data to the specified processing number.

H146194_10_010 53/122

Detailed Description of AU Macros

3.5 Macros Handling Rows/Columns

This chapter contains a description of all AU macros which can be used to read (write) rows
or columns from (to) a 2D data set and AU macros that can be used to read rows or planes
from 3D raw data.

3.5.1 RSR

NAME
RSR - Reads a row from a 2D spectrum and stores it as a 1D spectrum.

SYNTAX
RSR(int row, int procno)
DESCRIPTION
The macro RSR reads a row from a 2D spectrum and stores it as a 1D spectrum. It can be
used in the following ways:
» Specified with procno > 0, executed on a 2D data set.
The specified row is stored under the current data name, the current expno and the
specified procno.
» Specified with procno = -1, executed on a 2D data set.
The specified row is stored under data set ~TEMP/1/pdata/1
» Specified with procno > 0, executed on a 1D data set.
The specified row is read from a 2D data set that resides under the current data name,
the current expno and the specified procno and written into the current 1d data set.
» Specified with procno = -1, executed on a 1D data set.
The specified row is read from the 2D data set from which the current 1D data set was
extracted (as defined in the file used_from).
EXAMPLE
The following AU program gets a 2D data set and processes it. Then it reads row 16 and
stores that under procno 999:
DATA SET ("my 2D data", 1, 1, "C:/bio", "guest")
XFB
RSR (16, 999)
QUIT
SEE ALSO
RSC [54] - Reads a column from a 2D spectrum and store it as a 1D spectrum.
3.5.2 RSC
NAME
RSC - Reads column from a 2D spectrum and stores it as a 1D spectrum.
SYNTAX

RSC(int column, int procno)

54 /122 H146194_10_010

Detailed Description of AU Macros

DESCRIPTION

The macro RSC reads a column from a 2D spectrum and stores it as a 1D spectrum. It can
be used in the following ways:
» Specified with procno > 0, executed on a 2D data set.

The specified column is stored under the current data name, the current expno and the
specified procno.

» Specified with procno = -1, executed on a 2D data set.
The specified column is stored under data set ~TEMP/1/pdata/1

» Specified with procno > 0, executed on a 1D data set.
The specified column is read from a 2D data set that resides under the current data
name, the current expno and the specified procno and written into the current 1d data set.

» Specified with procno = -1, executed on a 1D data set.
The specified column is read from the 2D data set from which the current 1D data set
was extracted (as defined in the file used_from).

EXAMPLE

The following AU program gets a 2D data set and processes it in the F2 dimension. Then it
reads column 128 and processes the resulting 1D data set:

DATA SET ("my_ 2D data", 1, 1, "C:/bio", "guest")

XF2

RSC (128, 10)
RPROCNO (10)
EF

QUIT

SEE ALSO
RSR [54] - Reads a row from a 2D spectrum and store it as a 1D spectrum.
WSC [56] - Replaces a column of a 2D spectrum by a 1D spectrum.

3.5.3 WSR

NAME
WSR - Replaces a row of a 2D spectrum by a 1D spectrum.

SYNTAX
WSR(int row, int procno, int expno, char *name, char *user, char
*disk)

DESCRIPTION

The macro WSR replaces a row of a 2D spectrum by a 1D spectrum. It can be used in the
following ways:

* Executed on a 1D dataset.

The specified row of the specified dataset (which must be 2D data) is replaced by the
current 1D data.

« Executed on a 2D dataset.

The specified row of the current 2D dataset is replaced by the specified data set (must be
1D data).

H146194_10_010 55/122

Detailed Description of AU Macros

EXAMPLE

The following AU program gets a 2D dataset, reads row 16, phase corrects this row and
writes it back to the 2D data:

DATASET ("my 2D data", 1, 1, "C:/bio", "guest")
XFB

RSR (16, 999)

RPROCNO (999)

APK

WSR(16, 1, expno, name, user, disk)

QUIT

SEE ALSO
WSC [56] - Replaces a column of a 2D spectrum by a 1D spectrum.
RSR [54] - Reads a row from a 2D spectrum and store it as a 1D spectrum.

3.54 WSC

NAME
WSC - Replaces a column of a 2D spectrum by a 1D spectrum.

SYNTAX

WSC (int column, int procno, int expno, char *name, char *user, char
*disk)

DESCRIPTION

The macro wscC replaces a column of a 2D spectrum by a 1D spectrum. It can be used in the
following ways:

» Executed on a 1D data set.

The specified column of the specified data set (must 2D data) is replaced by the current
1D data.

» Executed on a 2D data set.

The specified column of the current 2D data set is replaced by the specified data set
(must be 1D data).

EXAMPLE

The following AU program gets a 2D data set, reads column 16, phase corrects this column
and writes it back to the 2D data:

DATA SET ("my 2D data", 1, 1, "C:/bio", "guest")
RSC(le, 999)

RPROCNO (999)

APK

WSC(l6, 1, expno, name, user, disk)

QUIT

SEE ALSO
WSR [55] - Replaces a row of a 2D spectrum by a 1D spectrum.

56 /122 H146194_10_010

Detailed Description of AU Macros

RSC [54] - Reads a column from a 2D spectrum and store it as a 1D spectrum.

3.5.5 RSER

NAME
RSER - Reads a row from 2D or 3D raw data and store it as a 1D FID.

SYNTAX

RSER (int row, int expno, int procno)

DESCRIPTION

The macro RSER reads a row from 2D or 3D raw data and stores it as a 1D fid. It can be
used in the following ways:

» Specified with expno > 0, executed on a 2D data set the specified row is stored under the
current data name and the specified expno. Processing parameters are stored under
procno 1.

» Specified with expno = -1, executed on a 2D data set the specified row is stored under
data set ~TEMP/1/pdata/1

» Specified with expno > 0, executed on a 1D data set the specified row is read from a 2D
raw data that resides under the current data name and the specified expno. Processing
parameters are read from procno 1.

» Specified with expno = -1, executed on a 1D data set the specified row is read from the
2D data set from which the current 1D data set was extracted (as defined in the file
used_from).

EXAMPLE

The following AU program splits 2D raw data into single fids that are stored in successive
expnos:

int td;
FETCHPAR1S ("TD", &td)
i1=0;
TIMES (td)
il ++;
RSER(il,il+expno, 1)
END
QUITMSG ("--- splitser finished ---")

n Note that this is the AU program splitser thatis delivered with TopSpin.

SEE ALSO
WSER [58] - Replaces a row of 2D raw data by 1D raw data.
RSER2D [59] - Reads a plane from 3D raw data and store it as 2D raw data.
RSR [54] - Reads a row from a 2D spectrum and store it as a 1D spectrum.

H146194_10_010 571122

Detailed Description of AU Macros

3.5.6 WSER

NAME
WSER - Replaces a row of 2D raw data by 1D raw data.
SYNTAX
WSER (int row, char *name, int expno, int procno, char *disk, char
*user)
DESCRIPTION
The macro WSER replaces a row of 2D raw data by 1D raw data. It can be used in the
following ways:
» Executed on a 1D data set.
The specified row of the specified data set (must be 2D data) is replaced by the current
1D data.
+ Executed on a 2D data set.
The specified row of the current 2D data set is replaced by the specified data set (must
be 1D data).
EXAMPLE

The following AU program writes a number of 1D FIDs that are stored under the same data
name and incremental expnos to 2D raw data.:

int ne, expl, procl;
char nml[20];
ne=1; expl=1l; procl=l;
strcpy (nml, name);
GETSTRING ("Enter name of 1D series: ", nml)
GETINT ("Enter starting EXPNO: ", expl)
GETINT ("Enter starting PROCNO: ", procl)
GETINT ("Enter # of Fids: ", ne)
USECURPARS
TIMES (ne)
WSER (loopcountl+l, nml, expl, procl, disk, user)
expl++;
END
QUIT

n Note that this is the AU program fidtoser that is delivered with TopSpin.

SEE ALSO
RSER [57] - Reads a row from 2D or 3D raw data and store it as a 1D FID.
WSR [55] - Replaces a row of a 2D spectrum by a 1D spectrum.
WSC [56] - Replaces a column of a 2D spectrum by a 1D spectrum.

58 /122 H146194_10_010

Detailed Description of AU Macros

3.5.7 RSER2D

NAME
RSER2D - Reads a plane from 3D raw data and stores it as 2D pseudo raw data.

SYNTAX

RSER2D (char *direction, int plane, int expno)

DESCRIPTION

The macro RSER2D reads a plane from 3D raw data and stores it as 2D pseudo raw data.
The first argument, the plane direction can be "s23" or "s13" for the F2-F3 or F1-F3 direction,
respectively. The specified plane is stored under the current data name, the specified expno
and the specified procno.

EXAMPLE

The following AU program gets a 3D data set, reads the F2-F3-plane 64 and stores that
under expno 11. It then switches to the output 2D data set and processes it.

DATASET ("my 3D data", 1, 1, "C:/bio", "guest")
RSER2D ("s23", 64, 11)

REXPNO (11)

XFB

QUIT

SEE ALSO
RSER [57] - Reads a row from 2D or 3D raw data and store it as a 1D FID.
WSER [58] - Replaces a row of 2D raw data by 1D raw data.

3.6 Macros Converting Data sets

This chapter contains a description of all AU macros which can be used to convert TopSpin
data. This includes the conversion of Bruker Aspect 2000/3000 data, Varian data and Jeol
data to TopSpin data format as well as the conversion of TopSpin data to JCAMP-DX.

3.6.1 TOJDX, TOJDX5

NAME
TOJDX - Converts a data set to JCAMP-DX 6.0 format .
TOJDX5 - Converts a data set to JCAMP-DX 5.0 format.

SYNTAX
TOJDX (char *path, int type, 1int mode, char *title, char *origin,
char *owner)

TOJDX5 (char *path, int type, int mode, char *title, char *origin,
char *owner)

H146194_10_010 59/122

Detailed Description of AU Macros

DESCRIPTION

The macro ToJDX converts the current AU data to standard JCAMP-DX 6.0 format. It takes
6 arguments:

1. The path name of the output file, e.qg. /tmp/data1.dx
2. The output type: enter a number between 0 and 6, where:
— 0 = FID (default).
— 1 =Real spectrum.
— 2 = Complex spectrum.
— 3 = Parameter files.
— 4 = Raw data + real and imaginary processed data.

— 5 = Raw data +real and imaginary processed data of all PROCNQ’s under the current
EXPNO.

— 6 = Raw data +real and imaginary processed data of all EXPNQO’s under the current
NAME.

3. The compression mode: enter 0, 1, 2 or 3 where 0=FIX, 1=PACKED, 2=SQUEEZED,
3=DIFF/DUP (default).

4. The title as it appears in the output file: enter a character-string.

5. The origin as it appears in the output file: enter a character-string.
6. The owner as it appears in the output file: enter a character-string.
If "*" is entered as an argument, then the default value is used.

n Note that the macro TOJDX5 only supports the output types 0, 1, 2 and 3.

EXAMPLE

The following AU program gets the foreground data set and performs a conversion to JCAMP
on 5 successive experiment numbers. The name of the JCAMP file contains the name and
expno of the corresponding TopSpin data set.

TIMES (5)
sprintf (text,"C:/TEMP/%s_%d.dx", name, expno);
TOJDX (text, 0, 3, "xmw, "wxmw mwxmw)
TEXPNO

END

QUIT

SEE ALSO
FROMJDX [60] - Converts a JCAMP-DX file to TopSpin data format.

3.6.2 FROMJDX

NAME
FROMJDX - Converts a JCAMP-DX file to TopSpin data format.

SYNTAX
FROMJDX (char *input-file)

60 /122 H146194_10_010

Detailed Description of AU Macros

DESCRIPTION

The macro FROMJDX converts a JCAMP-DX file to TopSpin data format. It takes one
argument; the path name of the input file, e.g. /tmp/data1.dx

FROMJDX can convert 1D and 2D data.

EXAMPLE

The following AU program converts all files with the extension .dx in the directory C./TEMP to
a TopSpin data set:

char **listfile;
il = getdir ("C:/TEMP",&listfile,"*.dx");
TIMES (11)
sprintf (text, "C:/TEMP/%s", listfile[il]);
FROMJDX (text)
END
QUIT

SEE ALSO
TOJDX [59] - Converts a data set to JCAMP-DX format.
getdir [+ 83] - Gets all file names and/or directory names within a directory.

3.6.3 VCONV

NAME
VCONV - Converts a Varian data set to Bruker TopSpin format.

SYNTAX

VCONV (char *v _name, char *ts name, int expno, char *disk, char
*user)

DESCRIPTION
The macro VCONV converts a Varian data set to TopSpin data format. It takes 5 parameters:
1. The name of the input Varian data set.

The name of the output TopSpin data set.

The experiment number of the output TopSpin data set.

The disk unit of the output TopSpin data set.

A A

The user of the output TopSpin data set.

EXAMPLE
The following AU program converts a Varian data set to TopSpin format:
VCONV ("pinen h.fid", "pinen h", 1, "C:/bio", "joe")
QUIT

Note that vCONV searches for the input data file in the directory defined by the environment
variable VNMR.

H146194_10_010 61/122

Detailed Description of AU Macros

Assume the file resides in C:/bio. You can set VNMR from the TopSpin command line with:
env set VNMR=c:/bio
or inside the AU program with:

CPR exec("env set VNMR=C:/bio", WAIT TERM);

SEE ALSO
JCONV [62] - Converts a Jeol data set to Bruker TopSpin format.

3.6.4 JCONV

NAME
JCONV - Converts a Jeol data set to Bruker TopSpin format.

SYNTAX
JCONV (char *3j name, char *ts name, int expno, char *disk, char
*user)

DESCRIPTION

The macro JCONV converts a Jeol data set to TopSpin data format. It takes 5 parameters:
» The name of the input Jeol data set.
* The name of the output TopSpin data set.
» The experiment number of the output TopSpin data set.
» The disk unit of the output TopSpin data set.
» The user of the output TopSpin data set.

Note that JCONV searches for the input data file in the directory defined by the environment
variable JNMR.

Assume the file resides in C:/bio. You can set JNMR from the TopSpin command line with:
env set JNMR=c:/bio

Or inside the AU program with:

CPR exec ("env set JNMR=C: /bio", WAIT TERM) ;

EXAMPLE
The following AU program converts a Jeol data set to TopSpin format:
JCONV ("gx400h.gxd", "gx400h", 1, "C:/bio", "joe")
QUIT

SEE ALSO
VCONV [61] - Converts a Varian data set to Bruker TopSpin format.

3.7 Macros Handling TopSpin Parameters

This chapter contains a description of AU macros which can be used to get and store
TopSpin parameters. Parameters are subdivided in acquisition, processing, output and plot
parameters. Furthermore, they exist in two different forms; as foreground and status

62 /122 H146194_10_010

Detailed Description of AU Macros

parameters. Finally, multi-dimensional data sets have parameter sets for each dimension.
Different AU macros are available for getting and storing parameters of all categories, forms
or dimensions.

3.71 FETCHPAR

NAME

FETCHPAR - Gets an acquisition, processing or output parameter.

SYNTAX
FETCHPAR (par, &val)

DESCRIPTION

The macro FETCHPAR gets the value of a foreground parameter and stores it into an AU
variable. This AU variable can then be used in subsequent AU statements. FETCHPAR allows
to get acquisition parameters (eda) and processing parameters (edp). It is typically used to
check or modify a parameter prior to an acquisition or processing statement.

The macro FETCHPAR takes two arguments:

1. The name of the parameter.

2. The AU variable into which the parameter value will be stored.
There are two important things to be considered:

1. The type of the AU variable must be the same as the type of the parameter (see TopSpin
Parameter Types [» 107]).

2. The second argument must be specified as the variable’s address, i.e. it must be
prepended with the ’&’ character. This, however, does not count for a text variable since a
text variable is already an address.

FETCHPAR works on 1D, 2D or 3D data sets and always gets a parameter of the first
dimension (F1 for 1D, F2 for 2D and F3 for 3D).

The handling of the macros FETCHPAR]1, FETCHPAR3, FETCHPARM, FETCHT1PAR and
FETCHDOSYPAR is equivalent to the handling of FETCHPAR.

EXAMPLES

The following AU program gets the value of the processing parameter S| and processes the
data 4 times, each time doubling the spectrum size and storing the data in successive
processing numbers:

FETCHPAR ("SI", &il)
TIMES (4)
EFP
IPROCNO
il = 11*2;
STOREPAR ("SI", 1i1)
END
QUIT

The following AU statements get the values of the acquisition parameter DW and the
processing parameter STSI and stores them in the predefined variables f1 and i1,
respectively. Then it gets value of the parameter ABSF1 and stores it in the user defined
variable leftlimit.

H146194_10_010 63/ 122

Detailed Description of AU Macros

SEE ALSO

float leftlimit;

FETCHPAR ("DW", &f1l)
FETCHPAR ("STSI", &il)
FETCHPAR ("ABSF1", sleftlimit)

FETCHPARS [64] - Gets a status parameter.
FETCHPARN [+ 66] - Gets a parameter from specified direction.
STOREPAR [65] - Stores an acquisition, processing or output parameter.

3.7.2 FETCHPARS
NAME
FETCHPARS - Gets a status parameter (acquisition and processing) .
SYNTAX
FETCHPARS (par, &val)
DESCRIPTION

The macro FETCHPARS gets the value of a status parameter and stores it into an AU
variable. This AU variable can then be used in subsequent AU statements. Acquisition status
parameters are set by acquisition commands and describe the status of the data set after
acquisition.

Note that the status parameters (dpa) describe what really happened and that this is
sometimes different from what was set up before the acquisition as acquisition parameters
(eda). For example, the status NS is smaller than originally specified when an acquisition
was halted prematurely. Any AU program statement which follows an acquisition command
and evaluates acquisition parameters must read status parameters. Therefore, FETCHPARS
is typically used after acquisition or processing statements, for example for error or abort
conditions (see example below).

The macro FETCHPARS takes two arguments:

1. The name of the parameter.

2. The AU variable into which the value is value will be stored.
There are two important things to be considered:

1. The type of the AU variable must be the same as the type of the parameter (see TopSpin
Parameter Types [» 107]).

2. The second argument must be specified as the variable’s address, i.e. it must be
prepended with the ’&’ character. This, however, does not count for a text variable since a
text variable is already an address.

The handling of the macros FETCHPARS1 and FETCHPARS3 is equivalent to the handling of
FETCHPARS.

64 /122

H146194_10_010

Detailed Description of AU Macros

EXAMPLE

The following AU program performs a series of acquisitions on the same data set until a
minimum signal/noise is reached. In a loop 8 scans are acquired, Fourier transformed and
phase corrected. Then the signal/noise of the spectrum is calculated and compared with the
minimum value. If the minimum signal/noise was not reached yet, 8 more scans are
accumulated etc. A maximum of 8000 scans is acquired. After the acquisition has been
stopped, the total number of actually acquired scans is displayed.

STOREPAR ("NS", 8)
GETFLOAT ("Please enter the minimum signal/noise", f1)
Z2G
TIMES (1000)
FT
APK
SINO
FETCHPARS ("SINO", f£f2)
if (f1 >= £2)
break;
GO
END
FETCHPARS ("NS", 1il)
Proc err (DEF ERR OPT, "Acquisition stopped
after %$d scans", il);

QUIT

SEE ALSO
FETCHPAR [63] - Gets an acquisition, processing or output parameter.
FETCHPARNS - Gets a status parameter from specified direction.
STOREPARS [67] - Stores a status parameter (acquisition and processing).

3.7.3 STOREPAR

NAME

STOREPAR - Stores an acquisition, processing or output parameter.
SYNTAX

STOREPAR (par, val)
DESCRIPTION

The macro STOREPAR stores the value of an AU variable into a parameter. This AU variable
can then be used in subsequent AU statements. STOREPAR can be used for acquisition
parameters (eda) and processing parameters (edp). It is typically used to set parameters
prior to an acquisition or processing statement. STOREPAR takes two arguments:

1. The name of the parameter.
2. The value to be stored which can specified in two different forms:
— As a constant.

H146194_10_010 65/122

Detailed Description of AU Macros

NOTES

EXAMPLE

SEE ALSO

3.7.4

— As the name of an AU variable.

Important: the type of the parameter must be the same as the type of the constant or
variable. (see TopSpin Parameter Types [107]).

STOREPAR works on 1D, 2D or 3D data sets and always stores a parameter of the first
dimension (F2 for 1D, F2 for 2D and F3 for 3D).

The handling of the macros STOREPARI, STOREPARS3, STORET1PAR and
STOREDOSYPAR is equivalent to the handling of STOREPAR.

The following AU program reads a standard parameter set, sets the pulse program and
power level and asks the user for the number of scans. Then a data set is acquired and
processed according to these parameters.

RPAR ("PROTON", "all")

STOREPAR ("PULPROG", "zg30")

STOREPAR ("PL 1", 10.0)

GETINT ("Please enter the number of scans:", il)
STOREPAR ("NS", il)

2G

EFP

QUIT

STOREPARS [67] - Stores a status parameter.
STOREPARN [66] - Stores a parameter to specified direction.
FETCHPAR [63] - Gets an acquisition, processing or output parameter.

STOREPARN

NAME

SYNTAX

STOREPAR - Stores a parameter to the specified direction.

STOREPARN (dir, par, val)

DESCRIPTION

TopSpin 2.1 and newer offers the macro STOREPARN. It works like STOREPAR except that it
can be used for any direction of an n-dimensional data set. STOREPARN takes three
arguments:

1. The direction of the data set.

2. The name of the parameter.

3. The value to be stored which can specified in two different forms:
— As a constant.
— As the name of an AU variable.

STOREPARN works on nD data sets of any dimension.

66 /122

H146194_10_010

Detailed Description of AU Macros

TopSpin 2.0 and older only supported AU parameter storage up to 3D, using the macros
STOREPAR, STOREPAR1 and STOREPARS. In TopSpin 2.1 and newer, these macros can
still be used or they can be replaced by STOREPARN.

n Note that the direction specification for STOREPARN is different from STOREPAR/1/3.

For a 2D data set:
» F2 direction (acquisition direction):
— STOREPAR (par, val) or STOREPARN (2, par, val)
« F1 direction:
— STOREPARI (par, wval) or STOREPARN (1, par, wval)

For a 3D data set:
» F3 direction (acquisition direction):
— STOREPAR (par, val) or STOREPARN (3, par, val)
» F2 direction:
— STOREPARI (par, wval) or STOREPARN (2, par, val)
« F1 direction:
— STOREPAR3 (par, wval) or STOREPARN (1, par, val)

SEE ALSO
STOREPAR [65] - Stores a parameter in acquisition direction.
STOREPARN [+ 66] - Stores a status parameter to specified direction.

3.7.5 STOREPARS

NAME

STOREPARS - Stores a status parameter (acquisition and processing)
SYNTAX

STOREPARS (par, val)
DESCRIPTION

The macro STOREPARS stores the value of an AU variable into a status parameter. This AU
variable can then be used in subsequent AU statements. Status parameters are set by an
acquisition or processing command and describe the status of the data set after this
acquisition or processing command. If the data are now manipulated by AU statements which
do not update the status parameters, these must be set explicitly with STOREPARS. For
example, if you add two fid’s with addfid, the total number of scans of the resulting data set is
not automatically updated. This must be done explicitly with STOREPARS.

The handling of the macros STOREPAR1S and STOREPAR3S is equivalent to the handling of
STOREPARS.

H146194_10_010 67 /122

Detailed Description of AU Macros

EXAMPLE

The following AU program reads the foreground data set, adds the fid of the next experiment
number and the experiment number after that and stores the result in the foreground data
set. The number of scans of the original FID’s are added and stored in the status parameter
NS of the resulting data set.

int expno save;

DATASET2 (name, expno+l, procno, disk, user)
DATASET3 (name, expno+2, procno, disk, user)
expno_save = exXpno;

TEXPNO

FETCHPARS ("NS", &il)

TEXPNO

FETCHPARS ("NS", &i2)

REXPNO (expno_save)

ADDFID

STOREPARS ("NS", 1il1+i2)

QUIT

SEE ALSO
FETCHPARS [64] - Gets a status parameter (acquisition and processing).
STOREPAR [+ 65] - Stores an acquisition, processing or output parameter.

3.7.6 RPAR

NAME
RPAR - Reads a parameter set to the current AU data set.

SYNTAX
RPAR (char *parset, char *typ)

DESCRIPTION

The macro RPAR reads a parameter set to the current AU data set. This can be a standard
Bruker parameter set or a user defined parameter set which was stored with WPAR. RPAR
takes two arguments:

1. The name of the parameter set.
2. The type of parameters which are to be read.
The second argument can be:
« acqu for acquisition parameters (eda).
* proc for processing parameters (edp).
* outd for output parameters (edp).
« all for acquisition, processing, plot and output parameters.

EXAMPLE

The following AU program reads the standard Bruker parameter set PROTON, sets the
number of scans to 1024 and runs an acquisition:

68 /122 H146194_10_010

Detailed Description of AU Macros

RPAR ("PROTON", "all")
STOREPAR ("NS", 1024)
72G

QUIT

SEE ALSO
WPAR [69] - Writes the current data set parameters to a parameter set.

3.7.7 WPAR

NAME
WPAR - Writes the current data set parameters to a parameter set.

SYNTAX
WPAR (char *parset, char *typ)

DESCRIPTION

The macro WPAR writes the parameters of the current AU data set to a parameter set. You
can only write to user defined parameter sets. Bruker standard parameters sets cannot be
overwritten. WPAR is typically used in AU programs to store a temporary parameter set. It
takes two arguments:

* The name of the parameter set.
» The type of parameters which are to be stored.
The second argument can be:
« acqu for acquisition parameters (eda).
* proc for processing parameters (edp).
 outd for output parameters.
« all for acquisition, processing, plot and output parameters.

EXAMPLE

The following AU program reads the acquisition parameters of the Bruker standard parameter
set PROTON, sets the number of scans, the frequency offset and time domain data size and
writes the acquisition parameters to a temporary parameter set. It then performs 8 successive
acquisitions with these parameters.

RPAR ("PROTON", "all")
STOREPAR ("NS", 16)
STOREPAR("O1", 766.23)
STOREPAR ("TD", 8192)
WPAR ("partemp", "acqu")
TIMES (8)

ZG

TEXPNO

RPAR ("partemp", "acqu")
END
QUIT

H146194_10_010 69/ 122

Detailed Description of AU Macros

SEE ALSO
RPAR [68] - Reads a parameter set to the current AU data set.

3.8 Macros for Plot Editor/Autoplot

This chapter contains a description of AU macros which can be used to plot data using Plot
Editor portfolios and layouts. These include macros for the creation and definition of portfolios
and for plotting to the printer, to a postscript file or enhanced metafile.

TopSpin 2.0 and newer also offer macros for automatic creation of Plot Editor layouts.
Examples are LAYOUT OBJ 1D and LAYOUT ADD. These are described in a separate
manual (see Help => Manuals => [Programming Manuals] Plot Layout Programming).

3.8.1 AUTOPLOT

NAME
AUTOPLOT - Plots the current data set according a Plot Editor layout.
SYNTAX
AUTOPLOT
DESCRIPTION
The macro AUTOPLOT plots the current data set according to the Plot Editor layout that is
defined by the parameter LAYOUT.
The Plot Editor layout can be:
» A standard layout that was delivered with TopSpin.
» A user defined layout that was setup and stored from Plot Editor.
Processing AU programs that contain the AUTOPLOT macro can be called with one of the
options a, e, h or t. They cause AUTOPLOT to store the plot as a postscript file. For example,
the AU program proc_1d can be entered as:
proc_1d - Prints to the printer defined in the layout.
proc 1d a - Prints to a PDF file in the data set procno.
proc_1d e - Also prints to a postscript file in the data set procno.
proc_1d h - Also prints to a postscript file in the users home directory.
proc _1d t - Also prints to a postscript file in the TEMP directory.
Furthermore, you can use multiple arguments, e.g.:
proc 1d a e - Prints to a PDF file and to a postscript file in the data set procno.
(see also the header of the AU program plot to file).
EXAMPLE

This AU program processes the current 1D data set and plots it according to the Plot Editor
layout specified in edp:

EF

APK

SREF

ABS
AUTOPLOT

70/122 H146194_10_010

Detailed Description of AU Macros

QUIT

SEE ALSO
AUTOPLOT_TO _FILE P 71]
AUTOPLOT_WITH_PORTFOLIO [» 74]
AUTOPLOT_WITH_PORTFOLIO_TO_FILE | 75]

3.8.2 AUTOPLOT_TO_FILE

NAME
AUTOPLOT TO FILE - as AUTOPLOT but store the output into a file
SYNTAX
AUTOPLOT TO FILE(file name)
DESCRIPTION
The macro AUTOPLOT TO_ FILE plots the current data set according to the Plot Editor layout
defined by the parameter LAYOUT. The output is not sent to the printer but stored in the file
that is specified as an argument. The argument is normally a full path name. If it is not, the
file is stored in the TopSpin home directory.
If the file name has the extension .ps, the output is stored as a postscript file. If (under
Windows) it has the extension .emf, as in the example below, the output will be stored as an
enhanced metafile.
AUTOPLOT TO_ FILE is actually a composite macro that consists of several PORTFOLIO*/
AUTOPLOT* macros. This, however, is transparent to the user.
EXAMPLE
This AU program processes the current 1D data set and plots it according to the Plot Editor
layout specified in edp. The result is stored in an enhanced metafile.
EF
APK
SREF
ABS
AUTOPLOT TO FILE("C:/mydata.emf")
QUIT
SEE ALSO

AUTOPLOT | 70]
AUTOPLOT_WITH_PORTFOLIO [» 74]

3.8.3 CREATE_PORTFOLIO

NAME
CREATE_PORTFOLIO - Creates a Plot Editor portfolio.

SYNTAX
CREATE PORTFOLIO (name)

H146194_10_010 717122

Detailed Description of AU Macros

DESCRIPTION

The macro CREATE PORTFOLIO creates the Plot Editor portfolio that is specified as an
argument. It takes one argument; the file name of the portfolio.

The argument is normally specified as a full path name. If it is not, the portfolio is stored
under the TopSpin home directory. If the specified file already exists, it is overwritten.

Note that CREATE PORTFOLIO creates the portfolio but does not insert any data set
specifications.

EXAMPLE

This AU program plots the current data set according to the Plot Editor layout specified in
edp. Itis just a simple demonstration of the use of PORTFOL IO macros.

CREATE PORTFOLIO (“C:/temp/myPortfolio.por”)
ADD CURDAT TO PORTFOLIOCLOSE PORTFOLIO
AUTOPLOT WITH PORTFOLIO

QUIT

n Note that this AU program does the same as the command autoplot.

SEE ALSO
ADD_TO_PORTFOLIO | 73]
CLOSE_PORTFOLIO [73]

3.84 ADD_CURDAT_TO_PORTFOLIO

NAME
ADD CURDAT TO PORTFOLIO - Adds the current data set to the portfolio.

SYNTAX
ADD CURDAT TO PORTFOLIO

DESCRIPTION

The macro ADD CURDAT TO PORTFOLIO adds the current data set to the Plot Editor
portfolio that was previously create with CREATE PORTFOLIO.

EXAMPLE

This AU program plots two data sets, the current and next processing number of the current
data name, according to the Plot Editor layout.

CREATE PORTFOLIO (“C:/temp/myPortfolio.por”)
ADD CURDAT TO PORTFOLIO

IPROCNO

ADD CURDAT TO PORTFOLIO

CLOSE PORTFOLIO
AUTOPLOT WITH PORTFOLIOQUIT

721122 H146194_10_010

Detailed Description of AU Macros

SEE ALSO
CREATE_PORTFOLIO [71]
CLOSE_PORTFOLIO [73]

3.8.5 ADD_TO_PORTFOLIO

NAME

ADD TO_ PORTFOLIO - Adds the specified data set to the portfolio.
SYNTAX

ADD TO PORTFOLIO (disk,user, name, expno, procno)
DESCRIPTION

The macro ADD_TO PORTFOLIO adds a data set to the portfolio that was previously created
with CREATE PORTFOLIO. The data set to be added is completely specified by the five
arguments of ADD TO PORTFOLIO.

n Note that these arguments can be constants (values) or variables.

EXAMPLE
This AU program plots two data sets according to the TopSpin layout.

Note that the first data set to be plotted is the so called second data set (edc2), specified by
the predefined dedicated variables disk2, user?2 etc.

CREATE PORTFOLIO (“/temp/myPortfolio.por”)

GETCURDATAZ

ADD TO_PORTFOLIO (disk2, user2, name2, expno2, procno2)
ADD TO PORTFOLIO("C:/ts", "guest", "mydata", 1, 3)
CLOSE_PORTFOLIO

AUTOPLOT WITH PORTFOLIO

QUIT

SEE ALSO
ADD_CURDAT_TO_PORTFOLIO | 72]

3.8.6 CLOSE_PORTFOLIO

NAME
CLOSE_PORTFOLIO - Closes the portfolio definition.

SYNTAX
CLOSE_PORTFOLIO

H146194_10_010 731122

Detailed Description of AU Macros

DESCRIPTION
The macro CLOSE PORTFOLIO closes the definition of the portfolio that was previously
created with CREATE PORTFOLIO. It must be used after the Ilast

ADD CURDAT TO PORTFOLIO or ADD TO PORTFOLIO macro and before the first
AUTOPLOT* macro.

EXAMPLE

This AU program plots the current data set according to the TopSpin layout. It is just a simple
demonstration of the use of PORTFOLIO macros.

CREATE PORTFOLIO (“C:/temp/myPortfolio.por”)
ADD CURDAT TO PORTFOLIO CLOSE PORTFOLIO
AUTOPLOT WITH PORTFOLIO

QUIT

n Note that this AU program does the same as the command autoplot.

SEE ALSO
CREATE_PORTFOLIO | 71]
ADD_TO_PORTFOLIO | 73]

3.8.7 AUTOPLOT_WITH_PORTFOLIO

NAME
AUTOPLOT WITH PORTFOLIO - Plots the data set(s) of the current portfolio.

SYNTAX
AUTOPLOT WITH PORTFOLIO

DESCRIPTION
The macro AUTOPLOT WITH PORTFOLIO plots the data set(s) defined in the portfolio
created with CREATE PORTFOLIO according to the Plot Editor layout defined by the edp
parameter LAYOUT.

EXAMPLE

This AU program plots the current data set according to the TopSpin layout. It is just a simple
demonstration of the use of PORTFOLIO macros.

CREATE PORTFOLIO (“C:/temp/myPortfolio.por”)
ADD CURDAT TO PORTFOLIOCLOSE PORTFOLIO
AUTOPLOT WITH PORTFOLIO

QUIT

n Note that this AU program does the same as the command autoplot.

741122 H146194_10_010

Detailed Description of AU Macros

SEE ALSO
AUTOPLOT > 70]
AUTOPLOT_WITH_PORTFOLIO_TO_FILE | 75]

3.8.8 AUTOPLOT_WITH_PORTFOLIO_TO_FILE

NAME
AUTOPLOT WITH PORTFOLIO TO FILE - Plots the data set(s) of the current portfolio and
store the output into a file.
SYNTAX
AUTOPLOT WITH PORTFOLIO TO FILE(file name)
DESCRIPTION
The macro AUTOPLOT WITH PORTFOLIO TO FILE plots the data set(s) defined in the Plot
Editor portfolio that was previously created with CREATE PORTFOLIO. The plot is made
according to the layout defined by the parameter LAYOUT. The output is stored in the file that
is specified as an argument to the macro. The argument is normally a full path name. If it is
not, the portfolio is stored under the TopSpin home directory.
If the file name has the extension .ps, as in the example below, the output will be stored as a
postscript file. If (under Windows) it has the extension .emf, the output is stored as an
enhanced metafile.
EXAMPLE
This AU program plots the current data set according to the Plot Editor layout specified in
edp and stores the result into a postscript file.
CREATE PORTFOLIO (“C:/temp/myPortfolio.por”)
ADD CURDAT TO PORTFOLIOCLOSE PORTFOLIO
AUTOPLOT WITH PORTFOLIO TO FILE("/users/guest/mydata.ps")
QUIT
SEE ALSO

AUTOPLOT_WITH_PORTFOLIO [» 74]
AUTOPLOT_TO_FILE P 71]

3.9 Macros Prompting the User for Input

This chapter contains a description of all AU macros which can be used to prompt the user
for input and store the input into an AU variable. Different macros are available for requesting
integer, float, double or text values.

3.9.1 GETINT

NAME
GETINT - Prompts the user to enter an integer value.

SYNTAX

GETINT ("Please enter an integer wvalue : ", il)

H146194_10_010 751122

Detailed Description of AU Macros

DESCRIPTION

The macro GETINT prompts the user to enter an integer value and stores this value into an
integer variable. It can be used for various purposes, for example to set the value of a
TopSpin (integer) parameter or to specify the number of cycles in an AU program loop.
GETINT takes two arguments:

+ A text string which prompts the user to enter an integer value.
* An integer variable into which the value is stored.

EXAMPLE

The following AU program prompts the user for the number of scans per acquisition and the
number of experiments to be done:

GETINT ("Please enter the number of scans:", il)
GETINT ("Please enter the number of experiments:", i2)
TIMES (i2)
STOREPAR ("NS", i1)
ZG
TEXPNO
END
QUIT

SEE ALSO
GETFLOAT [» 76] - Prompts the user to enter a float value.
GETDOUBLE [* 76] - Prompts the user to enter a double value.
GETSTRING [77] - Prompts the user to enter a text string.

3.9.2 GETFLOAT, GETDOUBLE

NAME
GETFLOAT - prompt the user to enter a float value.
GETDOUBLE - prompt the user to enter a double value.
SYNTAX
GETFLOAT (text, f1)
GETDOUBLE (text, dl)
DESCRIPTION

The macro GETFLOAT prompts the user to enter a float value and stores this value into a float
AU variable. It is used to get the value for a variable or TopSpin parameter of type float which
can then be stored with STOREPAR. GETFLOAT takes 2 arguments:

1. A text string which prompts the user to enter a float value.
2. The float variable into which the value is store.

The description for GETDOUBLE is equivalent, except that it is used for variables or TopSpin
parameters of type double.

76 /122 H146194_10_010

Detailed Description of AU Macros

EXAMPLE

The following AU program prompts the user for the frequency offset and Gaussian
broadening, stores these values into the parameters O1 and GB respectively and then runs
an acquisition, Gaussian multiplication and Fourier transform:

GETDOUBLE ("Please enter the frequency offset:", dl)
STOREPAR ("ol", dl);

GETFLOAT ("Please enter the Gaussian broadening:", f1)
STOREPAR ("GB", f1)

ZG

GM

FT

QUIT

SEE ALSO
GETINT [75] - Prompts the user to enter an integer value.
GETSTRING [77] - Prompts the user to enter a text string.

3.9.3 GETSTRING

NAME
GETSTRING - Prompts the user to enter a text string.
SYNTAX
GETSTRING (text, cval)
DESCRIPTION
The macro GETSTRING prompts the user to enter a text string which is then stored into an
AU variable. It can be used for various purposes, for example to ask the user a question or
prompt the user to enter a name. GETINT takes two arguments:
1. Atext string which prompts the user to enter a text string.
2. The character-string variable into which the value is stored.
EXAMPLE

The following AU program asks the user if an integration must be done and, if yes, which
intrng file must be used. Then the integrals are calculated and listed:

char answer([8];
GETSTRING ("Do you want to do an integration (yes/no)?", answer)
if (!strcmp(answer,"yes"))
{
GETSTRING ("Which intrng file must be used?", text)
RMISC ("intrng", text)
LT

QUIT

H146194_10_010 771122

Detailed Description of AU Macros

SEE ALSO
GETINT [75] - Prompts the user to enter an integer value.
GETFLOAT [76] - Prompts the user to enter a float value.
GETDOUBLE [' 76] - Prompts the user to enter a double value.

781122 H146194_10_010

Bruker Library Functions

4 Bruker Library Functions

This chapter contains a description of various C functions which are available as part of
Bruker libraries. Several of them concern the handling of data set lists or directory lists. You
can, for instance, get a list of file names, display it, select a file from the list and then copy the
file to a different directory. The functions described in this chapter are particularly useful for
files located in the directories <tshome>/conf and <tshome>/exp. For copying data sets, we
recommend to use the macros described in Macros Changing the Current AU Data set [43].

4.1 CalcExpTime, PrintExpTime

NAME
CalcExpTime - Calculates the experiment time for the current experiment.
PrintExpTime - Prints the experiment time for the current experiment.

SYNTAX
static void PrintExpTime () ;
int CalcExpTime ();
void PrintExpTime (int exptime, int expno);

#include<inc/exptutil>

DESCRIPTION

The function CalcExpTime calculates the experiment time for the current experiment. The
return value is the experiment time in seconds. The function PrintExpTime can be used to
print the experiment time in the form "days hours minutes seconds".

EXAMPLE

The following AU program calculates and prints the experiment time of a sequence of 10
experiments starting with the foreground data set.

static void PrintExpTime () ;

TIMES (10)
PrintExpTime (CalcExpTime (),loopcountl) ;
TEXPNO

END

QUIT

#include<inc/exptutil>

Note that the declaration of PrintExpTime must appear at the beginning of the AU
program and the #include statement at the end of the AU program.

SEE ALSO
multiexpt [+ 97] - A standard Bruker library AU program.

H146194_10_010 791122

Bruker Library Functions

4.2 CheckSumfFile

NAME
CheckSumFile - Creates a checksum of a data file .

SYNTAX
CheckSumFile(filnam, 0, dest, 0, verb, bytord, dtyp, dim, sizO0,
siz, xdim)

DESCRIPTION

The function CheckSumFile generates a checksum of a data file. The output consist of a
checksum preceded by hash type and data sizes, e.qg:

data hash MD5: 512 * 256
16 A5 E9 14 FB 66 8B 48 09 8B E3 CA 86 D2 68 A2

which are stored in a destination character string. The input data file can be a TopSpin raw or
processed data file or any other integer data file. The data size, storage mode and
dimensionality must be specified as arguments.

The arguments of the function have the following meaning:
* const char* filnam
Full path name of the input data file.
* char* dest
Destination character string for function output. Must at least be 128 byte.
* int verb
Verbose error if the input file does not exist (0=no, 1=yes).
* int bytord

Byteorder of the input data (parameter BYTORDA for raw data or BYTORDP for
processed data).

* int dtyp

Data type of the input data (parameter DTYPA for raw data and DTYPP for processed
data).

e int dim
Data dimensionality (1 for 1D data, 2 for 2D data, ... etc.).
e int siz0

For raw data, sizO must be set to TD in the acquisition direction. For processed data, siz0
must be set to Sl in the first direction.

e const int* siz

Array of sizes. For processed data, siz must be set to Sl in the successive directions. For
example, for 2D data, siz = (F2-SI, F1-SI).Forraw data, siz mustbe setto TD in
the successive directions.

Attention: in the acquisition direction, siz must be TD rounded to the next multiple of 256.
* const int* xdim

For raw data, xdim = siz. For processed data, xdim is the array of submatrix sizes of
successive directions. For example, for 2D processed data xdim = (F2-XDIM, F1-
XDIM).

CheckSumFile can have the following return values:

> 0 : successful operation.

80/122 H146194_10_010

Bruker Library Functions

= 0 : parameter inconsistency or I/O problems.
< 0: all other cases.

The return value can be used as an argument of the function CheckSumError () which
generates an error string.

The output of CheckSumFile can be appended to the audit file with the function
AuditAppend as shown in the example below.

EXAMPLE

The following AU statements will generate a data checksum of the current processed 2D data
and store it in the current data auditp.txt file. It is part of the Bruker AU program xfshear.

int bytordp, dtypp, sizel[2], xdim[2];
char name2rr [PATH MAX], nameaudit[PATH MAX],
audittext[512];
char* auditp = audittext + sprintf (audittext,
"processing description");
FETCHPARS ("BYTORDP", &bytordp)
FETCHPARS ("DTYPP", sdtypp)
FETCHPARS ("SI", &size[0])
FETCHPARS ("XDIM", &xdim[0])
FETCHPAR1S ("SI", &size[1l])
FETCHPAR1S ("XDIM", &xdim[1])
sprintf (name2rr, "$s/data/%s/nmr/%s/%d/pdata/%d/2rr",
disk, user, name, expno, procno);
if (CheckSumFile (name2rr, 0, auditp, 0, 1, bytordp,
dtypp, 2, size[0], size, xdim) > 0)
{
sprintf (nameaudit, "%$s/data/%s/nmr/%$s/%d/pdata/%d/
auditp.txt",disk, user, name, expno, pProcno);
AuditAppend (nameaudit, audittext);
}
QUIT

SEE ALSO
AuditAppend [81]
AuditCreate [82]

4.3 AuditAppend

NAME

AuditAppend - Appends a new entry to an existing audit file .
SYNTAX

AuditAppend (const char* auditfile, const char* what) .
DESCRIPTION

The function AuditAppend appends a new entry to an existing audit file. An audit file entry
consists of the following fields:

NUMBER, WHEN, WHO, WHERE, PROCESS, VERSION, WHAT

All of these are automatically set by AuditAppend, except for the WHAT field which is
specified as the second argument. It can be any character string.

H146194_10_010 81/122

Bruker Library Functions

While auditfile can be any file name, typical values are "audita.txt" for acquisition related
entries and "auditp.txt" for processing related entries.

n Note that AuditAppend does not create an audit file if this does not exist yet.

EXAMPLE
See the example of the function CheckSumFile [80].

SEE ALSO
CheckSumfFile [» 80]
AuditCreate [82]

4.4 AuditCreate

NAME

AuditCreate - Creates a new audit file .
SYNTAX

AuditCreate (const char* auditn, const char* what).
DESCRIPTION

The function AuditCreate creates a new audit file with a single entry. This is, for example,
useful when new data are created. An audit trail entry consists of the following fields:

NUMBER, WHEN, WHO, WHERE, PROCESS, VERSION, WHAT

All of these are automatically set, except for the WHAT field which is specified as the second
argument.

n Caution: AuditCreate overwrites a possibly existing audit file.

EXAMPLE
Please look at the Bruker AU program sp1lit3d for an example of using AuditCreate.

SEE ALSO
CheckSumFile [» 80]
AuditAppend [81]

4.5 FileSelect

NAME
FileSelect - Displays a list of directory entries and allow to select entries.

SYNTAX

FileSelect (sourcedir, flist, &num, type);

82/122 H146194_10_010

Bruker Library Functions

DESCRIPTION

The function FileSelect opens a directory, shows a list of all file and directory entries and
allows you to select one or more entries. The list is stored in a 2 dimensional character-string
variable which can be evaluated by subsequent AU statements. FileSelect takes four
arguments:

1. The source directory.

2. The variable into which the list is stored.

3. The variable into which the number of selected entries is stored.

4. A flag which determines whether files (0) or directories (1) are listed.

FileSelect replaces the functions uxselect and getdir which were used by TopSpin’s
predecessor XWIN-NMR.

EXAMPLES

The following AU program will make a list of all shim files and will display this list in a
selection window. If an entry is selected, then the corresponding shim file is read with the
macro RSH. If no entries were found or selected, the AU program aborts.

char sourcedir([200];
int num= 100;
char flist[128][128];
sprintf (sourcedir, "%s/nmr/lists/bsms",
PathXWinNMRExpStan ()) ;

if (i1 = FileSelect (sourcedir, flist, &num, 0)< 0)

Proc_err (DEF_ERR OPT, "Error: No shim files selected!");
}
else
{
RSH (flist[0])
}
QUIT

4.6 getdir

NAME
getdir - Gets all file names and/or directory names within a directory.

SYNTAX
int getdir (char *directory, char ***filelist, const char
*match code);

DESCRIPTION

The function getdir opens a directory and gets all file and directory names in that directory.
This list is stored in a variable that is a 2-dimensional character array and which can be
evaluated by subsequent AU statements. The list can be limited by specifying a match_code;
only names matching this string are entered into the list. getdir takes three arguments:

1. The source directory.

2. The variable into which the list of names is stored. It has to be declared as: char**
filelist and to be passed in the form getdir (directory, &filelist,
mach code);

3. The match_code; an arbitrary string of characters.

H146194_10_010 83/122

Bruker Library Functions

The match_code in the third argument can be

- "[files" to get all files

- "/dir" to get all directories

- "/all" to get everything

- a specific pattern, such as "file.c"

- a pattern with wildcards.

Wildcards can be

- ? matches any single character

- * matches any sequence of zero or more characters
- [a-f] matches any single character in the range a-f

- ['a-f] matches any single character not in the range a-f

Note that files or directories whose name starts with a dot, such as ".profile", are only
matched when you specify "/all".

The return value of getdir is the number of successfully matched file names and/or
directory names.

getdir internally allocates memory for the list of names. Officially, you must free this
memory with the Bruker library function freedir. In practice, however, you can omit
freedir because all memory allocated by the AU program is automatically freed when the
AU program finishes.

EXAMPLES

The following AU statements will create a list of experiment directories from a TopSpin data
set. All entries are returned because no match_code was specified.

char sourcedir[200], **listfile;
sprintf (sourcedir, "%s/data/%$s/%s/%s/",

disk,user, type, name) ;

il = getdir (sourcedir,&listfile,NULL)

The following AU statements will create a list of shim files starting with the letters a to p from
the bsms directory.

char sourcedir[200], **listfile;
sprintf (sourcedir, "%s/nmr/lists/bsms",

PathXWinNMRExpStan ()) ;

il = getdir (sourcedir,&listfile,"[a-pl*");

The following AU statement will create a list of all files but not directories from the users
home directory.

il = getdir (PathSystemHome (), &listfile,"/files");

The following AU statement will return a list of all directory names from the users home
directory.

il = getdir (PathSystemHome (), &listfile,"/dir");

SEE ALSO
freedir [85] - Free memory allocated by getdir.

84 /122 H146194_10_010

Bruker Library Functions

4.7 freedir

NAME
freedir - Free memory allocated by getdir.

SYNTAX

void freedir (char **listfile);

DESCRIPTION
The function freedir frees the memory that was allocated by a getdir function call.

EXAMPLE
See the example under the function FileSelect.

SEE ALSO
getdir [+ 83] - Gets all file names and/or directory names within a directory.
FileSelect [+ 82] - Displays a list from which an entry can be selected by mouse-click.

4.8 dircp, dircp_err

NAME
dircp - Copy a file.
dircp err - Returns the error message that corresponds to the error return value of a
dircp function call.

SYNTAX
dircp (char *sourcefile, char *targetfile);
char *dircp err (int return value);

DESCRIPTION
The function dircp copies the sourcefile into the targeffile. If the targetfile exists, it will be
overwritten. A negative number is returned if copying was not possible. The function
dircp err will return the corresponding C error message. A return value of O indicates
successful execution.

EXAMPLE
The following AU program copies the title file of the foreground data set to the user's home
directory.

char sourcefile[200], targetfile[200];

sprintf (targetfile, "%s/title",PathSystemHome ());

if ((i1 = dircp (PROCPATH("title"),targetfile)) < 0)
Proc_err (DEF ERR OPT, dircp err (il));

QUIT

H146194_10_010 85/122

Bruker Library Functions

Note that PROCPATH uses a static buffer for building the path name, which means it cannot
be used to build more than one path name at a time, e.g. it cannot be used in both dircp
arguments.

4.9 gethighest

NAME
gethighest - Returns 1 + the highest used experiment number of a data set.

SYNTAX
int gethighest (char *directory);
#include <inc/sysutil>

DESCRIPTION
The function gethighest scans a directory for all subdirectories whose name is a number
and then returns 1 + the highest used experiment number. gethighest is typically used to
scan a data set name directory of a TopSpin data set. In that case, it returns 1 + the highest
used experiment number. If, for example, the highest used experiment number is 56, the
function will return the value 57. The function can also be used to return 1 + the highest used
processing number of a data set.

EXAMPLE

The following AU program will copy the current TopSpin experiment into 1 + the highest used
experiment number.

(void) sprintf (text,"%s/data/%s/nmr/%s",disk,user,name) ;
il = gethighest (text);

WRA (11)

QUIT

#include <inc/sysutil>

Note that the #include statement must be included at the end of the AU program.

410 getParfileDirForRead

NAME
getParfileDirForRead - Determines the path name of a list file to be read.

SYNTAX
int getParfileDirForRead (const char *file name, const char *key,
char *path);

DESCRIPTION
The function getParfileDirForRead determines the path name of a list file to be read.
The function has three arguments:
1. The file name of the list file.

86/122 H146194_10_010

Bruker Library Functions

2. The type (key) of the list file: PP_DIRS, VD DIRS etc. (see the table below for valid
keys).
3. The path name of the list file.

The third argument contains the result of the function. For determining this path name, the
function searches for the specified file name in all source directories that are set up for the
specified list type, for the current user. The first source directory in which the file is found
determines the output path name. To view or change the list of source directories:

1. Click Options => Preferences [set].
2. Click Directories in the left part of the dialog box.
3. Click the Change button of the entry Manage source directories....

The functions getParfileDirForRead and getParfileDirForWrite are only
implemented in TopSpin 2.1 and newer. This replaces the functions getstan and
PathXWinNMR*.

EXAMPLE

The following AU statements are an example of the usage of the function
getParfileDirForRead. They are part of the AU program proc intrng.

char intrngfilePath name[PATH MAX];
if (getParfileDirForRead("testrng", INTRNG DIRS,

intrngfilePath name) < 0)

Proc err (DEF ERR OPT, "testrng: %s",
intrngfilePath name) ;
ABORT

}
RMISC ("intrng", intrngfilePath name)

SEE ALSO
getParfileDirForWrite [+ 88] - Determines path name of list file to be written.

Directory Token File Type

PP _DIRS Pulse programs
CPD_DIRS cpd programs
MAC_DIRS Macros

PY DIRS Python programs
GP_DIRS Gradient program
SHAPE DIRS Shape files
SP_DIRS Shape lists

AU DIRS AU programs
PAR DIRS Parameter sets
VD DIRS Delays

VP DIRS Pulses

VC DIRS Loop counters

H146194_10_010

87 /122

Bruker Library Functions

Directory Token File Type

VT DIRS Temperatures

VA DIRS Amplitudes

F1 DIRS Frequency channel 1
DS DIRS Data sets

SCL_DIRS Solvent scaling region
PHASE DIRS Phase programs

INTRNG DIRS

intrng files

PEAKRNG_DIRS

Peakrng files

BASLPNTS DIRS

Baslpnts files

BASE INFO DIRS

Base_info files

PEAKLIST DIRS Peaklist files
CLEVELS_DIRS C levels files
REG DIRS Region files

INT2DRNG_DIRS

int2drng files

Table 4.1: List of keys for the functions getParfileDirForRead() and getParfileDirForWrite()

4.11 getParfileDirForWrite

NAME
getParfileDirForWrite - Determines the path name of a list file to be written.

SYNTAX
int getParfileDirForWrite (const char *file name, const char *key,
char *path);

DESCRIPTION
The function getParfileDirForWrite determines the path name of a list file to be read.
The function has three arguments:
1. The file name of the list file.
2. The type (key) of the list file: PP DIRS, VD DIRS etc. (see Bruker Library Functions

[79] at the description of getParfileDirForRead).

3. The path name of the list file.
The third argument contains the result of the function. For determining this path name, the
function searches through all source directories that are set up for the specified list type, for
the current user. The first source directory that actually exists on disk (usually the first
specified source directory) determines the output path name. To view or change the list of
source directories:
1. Click Options => Preferences [set].
2. Click Directories in the left part of the dialog box.
3. Click the Change button of the entry Manage source directories....

88/122 H146194_10_010

Bruker Library Functions

The functions getParfileDirForRead and getParfileDirForWrite are only
implemented in TopSpin 2.1 and newer. They replace the functions getstan and
PathXWinNMR*.

EXAMPLE

The following AU statements are an example of the usage of the function
getParfileDirForWrite. They are part of the AU program sysgenpar.

char vdpath[PATH MAX];
if (getParfileDirForWrite ("systllist", VD DIRS,
vdpath) < 0)

Proc_err (DEF_ERR OPT, "systllist: %s", vdpath);
ABORT

SEE ALSO
getParfileDirForRead [86] - Determines path name of list file to be read.

412 getstan

NAME

getstan - Returns the path name to the user’s current experiment directory.
SYNTAX

char * getstan (char *path name, const char *subdir);
DESCRIPTION

The function getstan detects the path name of the users's current experiment directory. If
the second argument subdir is NULL, the path is returned. Otherwise the contents of subdir is
appended to the path and the result is returned.

become obsolete and can be replaced by the functions getParfileDirForRead and

n Please note: in TopSpin 2.1 and newer the functions getstan and PathXWinNMR* have
getParfileDirForWrite.

EXAMPLE

The following AU program will get the pulse program of the current AU data set. It will then
prompt the user to confirm the name of the pulse program or to enter a new name. Finally,
the pulse program will be shown in a TopSpin window.

char pulprog[80];
FETCHPAR ("PULPROG", pulprog)
GETSTRING ("Enter the name of the pulse program: ",
pulprog) ;
(void) sprintf (text,"%$s/%s",
getstan (NULL, "lists/pp"),

pulprog) ;

H146194_10_010 89/ 122

Bruker Library Functions

SEE ALSO

413

showfile (text);
QUIT

Note that in the above example, the function call getstan (NULL,"lists/pp") returns
the path name /<tshome>/exp/stan/nmr/lists/pp. The function call getstan (NULL, NULL)
returns /<tshome>/exp/stan/nmt/.

PathXWinNMR [- 91]* - A class of functions which return path names to certain TopSpin
directories.

getParfileDirForRead [86] - Determines path name of list file to be read.
getParfileDirForWrite [88] - Determines path name of list file to be written.

GetTsVersionDot

NAME

SYNTAX

GetTsVersionDot - Returns the current version and patchlevel of TopSpin in a dotted
format.

const char* GetTsVersionDot;

DESCRIPTION

EXAMPLE

The function GetTsVersionDot returns the version and patchlevel of the currently running
TopSpin program. This variable can then be printed out.

NOTE: There are similar functions to find out parts of the version:
* int GetTsVersionMajor returns the major version as number. e.g. 4.
* int GetTsVersionMinor returns the minor version as number, e.g. 0.
* int GetTsVersionPl returns the patch level as number, e.g. 1.

* int GetTsVersionBeta returns 1 if TopSpin is a beta version, or 0 if TopSpin is a
release version.

* const char* GetTsVersionName returns the program name, as a string, i.e.
TopSpin.

e const char* GetTsVersionProduct returns the product name, version and patch
level as a string.

The following AU program prints the current version and patchlevel in the status line of
TopSpin.

const char* curversion =
GetTsVersionProduct () ;
Show_status (curversion);

QUIT

90/122

H146194_10_010

Bruker Library Functions

414 mkudir

NAME

mkudir - Create a directory and all parent directories as needed.
SYNTAX

int mkudir (char* path);
DESCRIPTION

The function mkudir extracts a directory name from path by using all characters until the
last /. It creates the directory and all parent directories as needed.

Thus the directory "/data/nmr/1/" will be created for path set to "/data/nmr/1/pulprog” or for path
set to "/data/nmr/1/".

EXAMPLE

The following AU program will create a data set directory tree which has an experiment
number one higher than the current foreground data set.

(void) sprintf (text,"%s/data/%$s/nmr/%s/%d/pdata/%d/",
disk,user,name, expno+l,procno) ;
if (mkudir (text) < 0)

Proc _err (DEF_ERR OPT, "could not create :\n%s",text);
QUIT

415 PathXWinNMR

NAME

PathXWinNMR - A class of functions which return path names to certain TopSpin directories.
SYNTAX

char *PathXWinNMRConf () ;

char *PathXWinNMRCurDir () ;

char *PathXWinNMRDotXWinNMR () ;

char *PathXWinNMRExp () ;

char *PathXWinNMRPlot () ;

char *PathXWinNMRProg () ;
DESCRIPTION

The above functions return path names to certain subdirectories of the TopSpin directory
<tshome>. For a standard installation, <tshome> is what you selected as installation directory
during installation of TopSpin. The standard depends on the TopSpin version. E.qg. it is:

On LINUX systems: /opt/topspin4.1.0
On Windows systems: C:\Bruker\TopSpion4.1.0

H146194_10_010 91/122

Bruker Library Functions

Please note: in TopSpin 2.1 and newer the functions getstan and PathXWinNMR* have
become obsolete and can be replaced by the functions getParfileDirForRead and
getParfileDirForWrite.

The following table lists the directory path names returned by the above functions. For
examples, please check the Bruker AU program library.

char * PathXWinNMRConf : returns /<tshome>/conf

char * PathXWinNMRCurDir : returns /<tshome>/prog/curdir

char * PathXWinNMRDotXWinNMR : returns $HOME/.xwinnmr-hostname
char * PathXWinNMRExp : returns /<tshome>/exp

char * PathXWinNMRPlot : returns /<tshome>/plot

char * PathXWinNMRProg : returns /<tshome>/prog

SEE ALSO
getParfileDirForRead [+ 86] - Determines path name of list file to be read.
getParfileDirForWrite [+ 88] - Determines path name of list file to be written.

4.16 pow_next

NAME
pow_next - Rounds to the next larger power of two

SYNTAX
int pow next (int 1il);
finclude <inc/sysutil>

DESCRIPTION
The function pow next takes i1, rounds it to the next larger integer value which is a power
of two and returns it. The function has no error handling. If 11 is smaller than 1, then the
function will return 1.

EXAMPLE

The following AU program will return 8192 and assign that to i2 because this is the next
larger number (compared to i1) which is a power of two.

il = 7000;
i2 = pow_next (il);
QUIT

#include <inc/sysutil>

n Note that the #include statement must be included at the end of the AU program.

92 /122 H146194_10_010

Bruker Library Functions

417 Proc_err

NAME

Proc_err - Shows an error message in a TopSpin dialog window.
SYNTAX

int Proc _err (int flag, char *format);

int Proc_err (int flag, char *format, ..);
DESCRIPTION

The function Proc_err can be used to construct an error message which will be displayed in
a TopSpin dialog window. The function takes two or three arguments:

1. A flag which determines the type and the number (2 or 3) of buttons in the error window.

2. The error message to be displayed. If this argument contains %d, %f, or %s statements,
then Proc_err needs a third argument which provides the corresponding variables.

3. The number of arguments after "format" is variable and depends on the format string. For
each occurrence of % an extra argument is required. %s requires an argument of type
char*, %d of type int, %f of type float and %If of type double. For more details see the
manual page of the C function printf or sprintf.

The first argument (flag) can have the following values:
* DEF ERR OPT
The error window has one button (OK). The AU program holds until the user clicks OK.
* INFO OPT

The error window has one button (Seen). The AU program continues but the error
window remains on the screen until it is cleared by another error window or the user
clicks Seen.

* QUESTION OPT
The error window has two buttons, OK and CANCEL. Proc_err returns ERR_OK (0) if
the OK button is clicked and ERR_CANCEL (-1) if the CANCEL button is clicked. The

return value is normally used by subsequent control statements to decide whether or not
to continue the AU program.

Note that the message in the Proc err window is constructed in the same way as the C
function sprintf constructs its strings.

EXAMPLE

The following examples show several possibilities of constructing error messages for the
Proc_err function call.

Example for DEF_ERR_OPT :
(void) sprintf (text,"%$s/data/%s/nmr/%s/%d/pdata/%d/",
disk,user,name, expno+l, procno) ;
Proc_err (DEF_ERR OPT, "Could not create :\n%s", text) ;

Example for QUESTION_OPT :

il = Proc err (QUESTION OPT,"Continue with the AU program?
\n\ Click OK to continue, click cancel stop");

if (i1l == ERR OK)

H146194_10_010 93 /122

Bruker Library Functions

{
/* Further AU statements */

}
if (i1 == ERR CANCEL)
{

ABORT

}
Example for INFO_OPT :
il = 7;
i2 = 5;
Proc_err (INFO_OPT,"%d is bigger than %d",il,i2);

SEE ALSO
Show_status [94] - Shows a string in the status line of TopSpin.
All AU programs from the Bruker AU program library which use Proc_err.

4.18 Show_status

NAME
Show_status - Shows a string in the TopSpin status line.
SYNTAX
void Show status (char *text);
DESCRIPTION
The function Show status displays the specified text in the TopSpin status line. This
function can be used as an alternative to the Proc err function. One difference to
Proc_err is that there is no window that needs to be acknowledged.
EXAMPLE
The following AU program will display the line "The AU program test has started" in the status
line of TopSpin:
(void) strcpy(text,"The AU program test has started");
Show status (text);
QUIT
SEE ALSO

Proc_err [93] - Shows a message in a TopSpin dialog window

4.19 showfile

NAME
showfile - Shows the contents of a file in a TopSpin window.

SYNTAX

int showfile (char *file);

94 /122 H146194_10_010

Bruker Library Functions

DESCRIPTION

The function showfile reads the specified file and displays it in a TopSpin window. This
display is a read-only display, so the file cannot be changed.

EXAMPLE
The following AU program will show the title file in a TopSpin window.
(void) sprintf (text,"%s/data/%$s/nmr/%s/%d/pdata/

$d/title",disk, user,name,expno,procno);

il = showfile (text);
QUIT
4.20 sleep
NAME
sleep - Pauses in an AU program for a certain number of seconds.
SYNTAX
int sleep (int seconds);
DESCRIPTION
The function sleep will cause the AU program to wait with the execution of the next
statement until the specified number of seconds has elapsed.
EXAMPLE
The following AU program will wait for 3 minutes before it resumes execution.
il = sleep (180);
EFP
QUIT
SEE ALSO

WAIT_UNTIL [+ 42] - Holds the AU program until the specified date and time.

4.21 unlinkpr

NAME

unlinkpr - Deletes all processed data files (1r, 1i, 2rr, 2ii etc.) of a data set.
SYNTAX

int unlinkpr (char *directory);

#include <inc/sysutil>
DESCRIPTION

The function unlinkpr deletes all processed data files (1r, 1i, 2rr, 2ii, 2ri, 2ir, dsp, dsp.hdr,
dsp_low) in the specified data set directory. There is no error check whether the files could be
deleted; the return value of the function is always 0 and can be ignored.

H146194_10_010 95/122

Bruker Library Functions

EXAMPLE
The following AU program will delete the processed data files of the foreground data set.
(void) sprintf (text,"%$s/data/%s/nmr/%s/%d/pdata/%d",
disk,user,name, expno,procno) ;
il = unlinkpr (text);
QUIT

#include <inc/sysutil>

n Note that the #include statement must be included at the end of the AU program.

96 /122 H146194_10_010

5 List of Bruker AU programs

This chapter contains a list with the names and short-descriptions of all Bruker library AU
programs.

Program

Description

abs2.water

Performs an F2 baseline correction on a 2D data set left and
right of the water peak.

abs2D

Performs a baseline correction on a 2D data set in both
dimensions.

acqu_fid ser

Acquires a single FID of the current 2D experiment and replaces
the old FID in the ser file.

acqulist Sets up and starts acquisitions using 1, f2, f3, vt, vc, vd, vp lists.

amplstab Calculates the amplitude stability based on a peaklist file.

angle Performs multiple acquisitions and ft's. This program is
particularly interesting when you want to adjust the magic angle
for MAS type experiments.

au cp Acquires with adjustment of decoupling power to acquisition
time.

au getlld Acquires sweep width optimized 1D spectra.

au_getlcosy

Acquires sweep width optimized COSY spectra.

au_getlinv

Acquires sweep width optimized 2D inverse spectra.

au_getlxhco

Acquires sweep width optimized XH correlated spectra.

au mult

AU program for C13 multiplicity analysis.

au_noediff

noe difference spectroscopy using different expnos.

au_noemult

noe difference spectroscopy with multiple irradiation points for
each multiplet using different expnos.

au_water

Acquires water-suppression spectra for use in foreground
(xau,xaua).

au _watersc

Acquires water-suppression spectra for use in automation, e.g.,
with sample changer.

au_ zg

General AU program for data acquisition.

au_ zgl35

Acquires DEPT135 type spectra.

au_zgcosy

Acquires COSY type spectra.

au_ zgglp Automatic data evaluation according to GLP standards. This AU
program takes O1, SW and O2 as arguments and then works
like au_zg.

au_zgnr Acquires with rotation switched off.

au_zgonly

General AU program for data acquisition.

au_zgsino

Acquires with signal to noise break up.

au_zgte

Acquires with temperature setting.

H146194_10_010

97 /1122

List of Bruker AU programs

Program

Description

aunmp_tojdx

Used in LIMS automation to process data. First, AUNMP is
executed, then, if specified, the command given on the
command line.

autoflist

Automatic generation of a frequency list for the peaks in the plot
region of the spectrum.

bsms_exam

Example AU program which shows how to use low level
functions to read or write BSMS parameters.

butselau AU program for selective experiments in bnmr.

buttonau AU program for basic experiments in bnmr.

calcphhomo Calculates the phase correction for the F2 and F1 dimension of
homonuclear 2D experiments.

calcphinv Calculates the phase correction for the F1 dimension in HMQC/
HSQC type experiments.

calcplen Calculates the pulse length according to the power level.

calcpowlev Calculates the power level according to the pulse length.

calctemp Calculates the temperature in the probe using the chemical shift
difference between the aliphatic and OH protons.

calfun Calculates an FID from an arbitrary function. This AU program is
especially useful when you want to create a user defined window
function for the 'uwm’ command.

clev Automatically calculates levels for 2D data.

clspec Cleans spectra from the effects of solvent suppression. Multiple
regions can filtered or deleted from the spectrum. Entries for
these regions can be deleted from peak lists and integrals.
Regions are requested interactively.

coiltemp Reads the Shim Coil Temperature.

convbin2asc Writes a 1D spectrum, with or without imaginary data points, into
a file in ASCII table format. Each line in the file corresponds to
one data point. The resulting file, named ascii-spec.txt, can be
used to import a 1D spectrum into third party software, like
Matlab.

convtold Converts a 2D spectrum to 1D format.

covariance Processes data according to Covariance NMR

decon tl Automatic deconvolution of a 2D T1/T2 experiment.

deptcyc Creates 3 DEPT experiments from 13C experiment with CPD
and then performs multiple cycles of NS scans (times 2 for
DEPT90).

depthalt Halt "deptcyc" AU program.

diffe Calculates the difference spectra between expnos.

diffp Calculates the difference spectra between procnos.

dosy Setup for diffusion/DOSY experiments linear gradient amplitude

ramp.

98 /122

H146194_10_010

List of Bruker AU programs

Program Description

elim ints Eliminates regions from the intrng file that contain the solvent

and/or reference signals. The result will be an intrng file where
the integral trails have a more reasonable scaling and smaller
integrals are better resolved.

flref Corrects the referencing in F1 for inverse type experiments.

fidadd Adds up FID’s in incremented expno’s.

fidtoser Writes a number of FIDs that are stored under the same NAME
and incremental EXPNOs to a ser file.

getphsum Reads the total phase values from the status parameters and
stores them back to the actual parameters.

gifadosy Gifa starter AU program.

goalternate Acquires alternated X/Y measurements. N averages are
acquired alternatingly in two experiments.

graderror Shows error messages generated by the gradshim gradient
shimming procedure.

gradratio Calculates gradient ratios for common inverse gradient pulse
programs.

heater Switches the heater on/off.

humpcal Performs the 'hump test’. Measures the width of a peak at 0.55%
and 0.11% of its signal height.

hwcal Calculates the width of a peak at half height.

iexpno Changes to a new experiment number.

ift3d Inverse Fourier transform of 3 dimensional data.

interleave Performs interleaved acquisitions.

ilhalt Stops an interleaved acquisition which was started with the AU

program interleave.

jconv_aufx Converts Jeol FX data in a loop. The data must be stored with
increasing extensions like proton.1, proton.2, ... etc.

listall au Scans all AU programs and extracts the name and the short
description. This information is then copied into the file listall in
your home directory. This list corresponds to the list you are
currently reading.

loadshimZ Reads the on-axis shim values from disk and loads them to the
BSMS.

lock off Switches off the lock to start data acquisition on the lock
channel.

lock on Switches on the lock if it has been disabled.

loopad] Parameter optimization AU program which calculates the lock

parameters loop filter, loop gain and loop time for optimal long-
time stability after adjusting lock phase and lock gain to optimal.

make2d Creates a new 2D data set from the current 1D data set. Can be
used for 2D spectroscopy and relaxation experiments. F2
parameters are copied from the 1D data, F1 parameters are set
to reasonable values.

H146194_10_010 99 /122

List of Bruker AU programs

Program Description
mkflist Automatically generates a frequency list file.
mulabel Processing AU program for determination of 13C multiplicity.
multanal Processing AU program for determination of 13C multiplicity.

multi decon

Automatic deconvolution of a series of 1D spectra with Al
calibration.

multi integ

Automatic integration of a series of 1D spectra with Al
calibration.

multi integ2

Automatic integration of a series of 1D spectra with calibration of
the integral values.

multi integ3

Automatic integration of a series of 1D spectra with Al
calibration. The output is written in a format suitable for import in
MS Excel or similar desktop publishing programs.

multi zgvd

Performs multiple acquisitions on increasing expnos with delays
that are read from a vdlist file. Alternatively, a fixed delay can be
entered.

multi zgvt

Performs multiple acquisitions on increasing expnos with
temperatures that are read from a vtlist file.

multicmd Performs multiple commands on increasing expnos.

multicyc Cycles through a series of acquisitions of increasing expnos.

multiexpt Calculates experimental time for multizg.

multihalt Halt "multicyc" AU program.

multimas Performs multiple MAS experiments on increasing expnos.

multizg Performs multiple acquisitions on increasing expnos.

noediff noe difference spectroscopy using different expnos.

noeflist Automatic generation of a frequency list with the peaks from the
current plot region for noe.

noemult noe difference spectroscopy with multiple irradiation points for
each multiplet using different expnos.

paropt Parameter optimization AU program.

parray Parameter optimization au program using parameter arrays.
Derived from ’paropt’, but several parameters may now be
changed per experiment. In addition, parameters are not
changed via constant increments. Instead, the values are taken
from an array.

pass2d Performs a PASS experiment with 5 Pi-pulses and 16
increments (samples up to 16 spinning side bands).

pecosy Program to pre-process P.E.COSY raw data before 2D-FT.

phtran Transfer phase correction parameters PHCO and PHC1 into

acquisition parameters PH_ref and DE.

plot sino

Plots spectrum, scaling depends on Signal/Noise.

plot to file

Creates a postscript file of the desired plot.

plotx

Plots individually scaled integral regions as separate objects.

100/ 122

H146194_10_010

List of Bruker AU programs

Program Description

popt au Parameter optimization AU program using parameter arrays.
Derived from 'paropt’ but several parameters can be optimized.
The parameters are changed according to the parameter
arrays.The AU program will be started from user interface
'popt' (parameter editor).

popthalt Halt "popt" AU program.

proc 1H Processes and plots 1D spectra. Does not perform baseline
correction.

proc 1d Processes and plots 1D spectra.

proc_ldapks

Processes and plot 1D spectra. Uses 'apks' for phase correction.

proc ldconlf

Processes and plots 1D spectra. Plots an additional spectrum on
the same plot if there are integrals in the lowfield range outside
delta > 11.

proc_ldconlf pr

Processes and plots 1D spectra. Plots an additional spectrum on
the same plot if there are integrals in the lowfield range outside
the plot limits.

proc ldglp Processing AU program with automatic data evaluation
according to GLP standards. This AU program takes CY as an
argument and then works like proc_1d.

proc 1dlf Processes and plot 1D spectra. Plots an additional lowfield plot.

proc_ldpppti

Processes and plots 1D spectra. Creates a special peaklist file
(frequency (Hz) and half width) and prints this on the plot.

proc ldppti

Processes and plots 1D spectra. Creates a peak picking list and
prints this on the plot.

proc_2d

Processes 2D spectra without plotting.

proc_2dhom

Processes and plots 2D homonuclear type spectra.

proc_2dhom 2pp

Processes and plots 2D homonuclear type spectra with two
positive projections.

proc_2dinv

Processes and plots 2D inverse type spectra.

proc 2dphfZhet

Determines phase correction in F2 for heteronuclear spectra.

proc_2dphf2hom

Determines phase correction in F2 for homonuclear spectra.

proc_2dpl Processes and plots 2D type spectra.
proc 2dsym Processes and symmetrizes 2D type spectra.
proc_2dtl Automatic processing of one 2D T1/T2 experiment with

subsequent T1/T2 calculation.

proc cpdl35

Processes and plots 13C CPD and DEPT135 spectra that were
acquired with the AU program au_zg135.

proc _glp

Automatic GLP data evaluation.

proc_intrng

Processes and plots 1D spectra. Uses the predefined integral
range file 'testrng' for integration.

proc_ MAS

Processes and plot 1D MAS spectra.

H146194_10_010

101 /122

List of Bruker AU programs

Program

Description

proc_no

AU program which does no processing.

proc_noe

Processes and plots noediff spectra.

proc_tl

Semi-automatic processing of multiple 2D T1/T2 experiment with
subsequent T1/T2 calculation.

proc_tecalib

Evaluation of previous temperature calibration experiments.

psysl80fltl Processing AU program for the 180° pulse calibration tests.
psysampls39 Processing AU program for the amplitude stability tests

- with shaped pulse

- with 30 ° pulse

- with 90° pulse

- after gradient echo (5msec, 30 G/cm)

- after gradient echo (5msec, 10 G/cm)

- after gradient pulse (1msec, 10G/cm).
psysblhom Processing AU program for the B1 homogeneity test.
psysb2hom Processing AU program for the B2 homogeneity test.
psyscancel Processing AU program for the

- phase cycling cancellation test

- phase cycling cancellation test after gradient pulse.
psysdantel Processing AU program for the dante type turn on test.
psysdecprol Processing AU program for the decoupler profile test.
psysexprol Processing AU program for the

- excitation profile (16 usec gauss shape) test

- excitation profile (6 msec gauss shape) test.
psysglitch Processing AU program for the glitch test.
psysgrrecol Processing AU program for the gradient recovery test.
PSySgrzpro Processing AU program for the z-gradient profile.
psysmodll Processing AU program for the

- modulator linearity test

- shaped pulse modulator linearity test.
psysmultll Processing AU program for the amplitude linearity test (1dB

power level steps).
psysphaslst Processing AU program for the

- phase stability test ("13° test")

- shaped pulse phase stability test (16 usec gaussian shape,

"13° test").
psysphasfl Processing AU program for the

- phase propagation test

- phase shifting test.
psyspullinl Processing AU program for the

H146194_10_010

List of Bruker AU programs

Program Description

- amplitude linearity test
- shaped pulse amplitude linearity test (pulse length *2, power

level +6).
psysquadim Processing AU program for the quad image suppression test.
psysrgtest Processing AU program for the receiver gain test (analog and
digital).
psyssoftpl Processing AU program for the shaped pulse comparison

(rectangular, gaussian, eburp1).

psystestab Automatic processing of a 2D temperature stability experiment,
evaluation of temperature and statistic of temperature stability.
Can be used to process data obtained with the AU program

systestab.

psysturnon Processing AU program for the turn on test.

pulse Program to calculate attenuation value for given pulse length or
nutation frequency, or vice versa.

pulsecal Single scan pulse calibration via stroboscopic nutation
experiment.

quadplot First plots a 2D overview spectrum and then the 4 quadrants of
the 2D spectrum.

queue Queue data acquisition.

queue init Initialises data acquisition with the AU program queue.

queuerga Queue data acquisition.

r23mplot Reads 2D slices from a 3D data set and plot them.

r23mult Repeatedly reads slices from a 3D data set (3rrr) into successive
experiment numbers.

rampXyY 3D gradient shimming with the BSMS RCB board.

repeat Repeats an acquisition with exactly the same parameters, pulse
program and other lists.

rescale Applies intensity scaling, for direct comparison of spectra acquire
with different RG, NS and flip angle.

secplot Generates a section plot. The overview spectrum is plotted

together with a vertical expansion of a smaller part of the
spectrum on top of it.

setdiffparm Extracts diffusion sequence parameters and stores parameters
for "vargrad" simfit fitting (T1/T2) or DOSY processing.

set sreglist Sets SREGLST parameter from NUC1 and SOLVENT.

simplex AU program for autoshimming. It is suitable for adjustment of

strongly coupled shim groups which may be far from the
optimum position.

simtoseq Converts data which have been recorded in digital and gsim
mode to data which appear to be acquired in gseq mode.

sinocal Calculates the signal to noise ratio.

split Separates data obtained with interleaved acquisition.

H146194_10_010 103 /122

List of Bruker AU programs

Program Description

split2D Splits a processed 2D file into single 1D spectra.

splitcomb Combines, shifts and adds 2D/3D data recorded with an
interleaved single or double InPhase/AntiPhase or S3E scheme.

splitcrinept AU program to separate interleaved 3D data.

splitser Splits a ser file into single fids, starting with the expno which
follows the ser file.

stackld Generates a stacked plot of 1D spectra from increasing or
decreasing EXPNOs or PROCNOs.

stack2d Generates a 2D stack plot.

stackpld Generates a stacked plot of 3 to 12 1D spectra from increasing
or decreasing EXPNOs or PROCNOs.

stdsplit Splits STD pseudo 2D data sets.

suppcal Calculates the width of the water peak at 100% and 50% of the
DSS signal height. The result is referred to as the 'water
suppression test’.

sysl80fltl Acquisition AU program for the 180° pulse calibration test with
different phases.

sysl1l80f1t2 Acquisition AU program for the 180° pulse calibration test with
different flip angles.

sysamplsp9 Acquisition AU program for the shaped pulse amplitude stability
test.

sysamplst Acquisition AU program for the amplitude stability tests
- with 30° pulse
- with 90° pulse.

sysblhom Acquisition AU program for the B1 homogeneity test.

sysb2hom Acquisition AU program for the B2 homogeneity test.

syscancel Acquisition AU program for the phase cycling cancellation test.

sysdantel Acquisition AU program for the dante type turn on test.

sysdecprol Acquisition AU program for the decoupler profile test .

sysexprol Acquisition AU program for the
- excitation profile (16 usec gauss shape) test
- excitation profile (6 msec gauss shape) test.

sysgenpar Preparation AU program for all HWT test programs.

sysglitch Acquisition AU program for the glitch test.

sysgrcan Acquisition AU program for the phase cycling cancellation test
after gradient pulse.

sysgrecho Acquisition AU program for the amplitude stability test after
gradient echo (5msec, 30 G/cm and 5msec, 10 G/cm).

sysgrrecol Acquisition AU program for the gradient recovery test.

sysgrstab Acquisition AU program for the amplitude stability test after

gradient pulse (1msec, 10G/cm).

104 /122

H146194_10_010

List of Bruker AU programs

Program Description

SySgrzpro Acquisition AU program for the z-gradient profile.

sysmodll Acquisition AU program for the modulator linearity test.

sysmodlsl Acquisition AU program for the shaped pulse modulator linearity
test.

sysmultll Acquisition AU program for the amplitude linearity test (1dB
power level steps).

sysphaslsp Acquisition AU program for the shaped pulse phase stability test
(16 usec gaussian shape, "13 degree test").

sysphaslst Acquisition AU program for the phase stability test ("13 degree
test").

sysphasfl Acquisition AU program for the

- phase propagation test
- phase shifting test.

syspullinl Acquisition AU program for the amplitude linearity test (pulse
length *2, power level +6).

sysquadim Acquisition AU program for the quad image suppression test.

sysrgtest Acquisition AU program for the receiver gain test (analog and
digital).

syssoftpl Acquisition AU program for the shaped pulse comparison

(rectangular, gaussian, eburp1).

syssplinl Acquisition AU program for the shaped pulse amplitude linearity
test (pulse length *2, power level +6).

systestab AU program for a temperature stability experiment performed as
pseudo 2D experiment including evaluation of temperature and
statistics of temperature stability.

systurnon Acquisition AU program for the turn on test.
tecalib AU program to determine the temperature calibration curve.
tmscal Performs a peak picking around the TMS signal. If the two

satellites from the 29Si - 1H coupling can be detected, the
resolution is OK.

tune Tunes a probe.

update layout Sets the parameter 'LAYOUT' in all parameter sets.

writeshimZ Reads the on-axis shim values and writes a pseudo shim file.

xfshear Program for shearing of 2D MQMAS spectra of odd half integer
quadrupolar nuclei. Data need to be acquired in States Mode

zeroim Zero the imaginary data of a 1D or 2D data set.

zg 2Hoffon General AU program for data acquisition. The lock is switched

off before the acquisition is started.

zgchkte Starts acquisition with zg and monitors the temperature. The
experiment is halted if the current temperature differs too much
from the target temperature.

zg_dfs Calculates shape file for double frequency sweep and
subsequent data-acquisition.

H146194_10_010 105/122

List of Bruker AU programs

Program Description
2dflshift Shifts a 2D spectrum along the F1 axis.
2dgetref Gets parameters for a 2D spectrum from the 1D reference

spectra: Nucleus, Frequencies, Spectral Width, and reference
plot data set names. The F2 reference is taken from the second
data set. The F1 reference is taken from the third data set.

Table 5.1: Bruker Library AU Programs

106 / 122 H146194_10_010

TopSpin Parameter Types

6 TopSpin Parameter Types

This chapter contains a list of all TopSpin parameters grouped by their type. The type of a
parameter can be integer, float, double or character-string. Several AU macros read TopSpin
parameters into AU variables or store the value of AU variables into TopSpin parameters. In
both cases it is important that the type of the AU variable is the same as the parameter type.

In the tables below, arrays are denoted with [size]. Thus, L[32] is an array of 32 integers.

6.1 Integer Parameters

The following TopSpin parameters are of the type integer:

ABSG AQORDER AQSEQ AQ_mod
BC_mod BYTORDA BYTORDP DATMOD
DIGMOD DIGTYP DS EXPNO2
EXPNO3 FnMODE FT_mod HGAIN[4]
HOLDER HPMOD[33] HPPRGN INTBC

L[32] LOCSHFT LPBIN MASR
MC2 ME_mod NBL NC
NCOEF NC_proc NLEV NS
NSP NZP OVERFLW PARMODE
PH_mod PKNL POWMOD PPARMOD
PRGAIN PSCAL PSIGN PROCNO2
PROCNO3 QNP REVERSE RO
RSEL[25] SI STSI STSR

SYMM TD TDO TDeff

TDoff TILT WBST WDW

XDIM XGAIN[4] YMAX_p YMIN_p

Table 6.1: TopSpin Parameters of Type Integer
6.2 Float Parameters
The following TopSpin parameters are of the type float:

ABSF1 ABSF2 ABSL ALPHA
ASSFAC ASSFACI ASSFACX ASSWID

AZFE AZFW BCFW CNST[64]

DC DE D[64] FCOR
FW GAMMA GB GPX[32]
GPY[32] GPZ[32] ISEN LB
LEVO LOCPHAS MAXI MI

H146194_10_010

107 /122

TopSpin Parameter Types

NOISF1 NOISF2 OFFSET PC
PCPDI[10] PHCO PHC1 PHCORJ[32]
PH_ref PL[64] P[64] RECPH
RG SIGF1 SIGF2 SINO
SPOAL[64] SPOFFS[64] SP[64] SSB
S_DEV TE TE2 TM1
TM2 TOPLEV V9 WBSWI8]
Table 6.2: TopSpin Parameters of Type Float
6.3 Double Parameters
The following TopSpin parameters are of the type double:
BF1 BF2 BF3 BF4
BF5 BF6 BF7 BF8
COROFFS CcY F1P F2P
INP[64] IN[64] INTSCL LFILTER
LGAIN LOCKPOW LTIME O)
02 03 04 05
06 o7 08 SF
SFO1 SFO2 SFO3 SFO4
SFO5 SFO6 SFO7 SFO8
Sw YMAX_a YMIN_a
Table 6.3: TopSpin Parameters of Type Double
6.4 Character-string Parameters

The following TopSpin parameters are of the type character-string:

AUNM[32] AUNMP[32] | CPDPRG[9][32] DFILT[16]
DU[256] DU2[256] DU3[256] EXP[64]
FQILIST[32] | GPNAM[32][64] | INSTRUM[64] | LAYOUT[256]

LOCNUCIS] MASRLST[16] NAME[96] NUC1[8]
PROBHD[64] | PULPROG[32] | SOLVENT[32] | SPNAM[64][64]
SREGLSTI[40] TI[72] TYPE[16] USER[64]
USERA1[80] USERP1[80] VCLIST[32] VDLIST[32]

VPLIST[32] VTLIST[32]

Table 6.4: TopSpin Parameters of Type Character-String

108 /122

H146194_10_010

7 Contact

Manufacturer
Bruker BioSpin GmbH
Rudolf-Plank-Str. 23
D-76275 Ettlingen
Germany

E-Mail: nmr-support@bruker.com
http://www.bruker.com
WEEE DE43181702

Bruker BioSpin Hotlines
Contact our Bruker BioSpin service centers.

Bruker BioSpin provides dedicated hotlines and service centers, so that our specialists can
respond as quickly as possible to all your service requests, applications questions, software
or technical needs.

Please select the service center or hotline you wish to contact from our list available at:
https.//www.bruker.com/service/information-communication/helpdesk.html

H146194_10_010 109 /122

mailto:nmr-support@bruker.com
http://www.bruker.com
https://www.bruker.com/service/information-communication/helpdesk.html

110/ 122 H146194_10_010

List of Figures

List of Figures

H146194_10_010 1117122

List of Figures

112 /122 H146194_10_010

List of Tables

Table 1.1: Predefined Dedicated Variablescoooiiiiiiiiiiiiice et 18
Table 1.2: Predefined General Variables......... ..o e 20
Table 1.3: Font and Format CoNVENLIONSuiiiiiiiiiiie e 21
LI o (=32 SR Y/ = Tor o TN @70 0 V=T oo o < SRR 23
Table 2.2: Macros for Data set Handlingcoooioioioiiiiee e e 23
Table 2.3: Macros Prompting the User for INPUL...........oooi i 25
Table 2.4: Macros Handling TopSpin Parameterso 25
Table 2.5: ACQUISIEION IMACIOS..........coiiiiieeeeeeee ettt e s e e e e e e e aaaeaaaaeeaeeeaees 26
Table 2.6: Macros Handling the Shim Unit and the Sample Changercccccccoviiiiiiiiiiiiene e, 27
Table 2.7: Macros Handling the Temperature Unit.............ccoooiiiii e 27
Table 2.8: Macros Handling the MAS UNit...........ooiiiiiiiii et 28
Table 2.9: 1D ProCesSSING MaACTOScoiuiiiieiiiiiiie ettt e e et e e e e e e e e e e nreeas 28
Table 2.10: Peak Picking, Integration and Miscellaneous Macroscoeiiiiiiiiiiiiiieiciieee e 30
Table 2.11: Macros for Algebraic Operations on Data SetS.........ccceeveeiiiiiiiiiiiiiiieeee e, 30
LIz o) (=302 2 B 1= ToTo) 0 1Y/ o] (U i) 1Y =]y o1 SRR 31
Table 2.13: 2D ProCesSiNg MaCTOS........ciiieiiiieeiee ettt e e ettt e e e e e e e e e e et aeeeeaaaeeeaaan 31
Table 2.14: Macros Reading and Writing Projections €fC.ucviviiveiiiiiiiiiiiiiieeeeee e 33
Table 2.15: 3D ProCesSiNG MaACTOScoiiuuiiiiiiiiieit ettt e e e e 34
Table 2.16: Spectral Width Calculation MACIOSccooiiiiiiiiiiieeeeee e 35
Table 2.17: Plot Editor Related MacCIOSuuuiiiiiiiiee et ee e e e e e e e e s eaeeeeeaaeeeeean 35
Table 2.18: Macros Converting Data Setscuuiiiiiiiiii s 36
Table 2.19: Macros to Execute Other AU Programs, TopSpin Macros or Commands.............cccceeee.e.... 36
Table 2.20: Bruker Library FUNCHONS...........uiiiieeie et 37
Table 2.21: Macros for LOOP CONMIOluuiiiiiiiieeee e e e e e 38
Table 2.22: Macros to Return from an AU Program ...t 38
Table 3.1: TopSpin interface COMMANGSuuuuuiiiiiiiiiee e e e e e e eeeees 43
Table 4.1: List of keys for the functions getParfileDirForRead() and getParfileDirForWrite() 87
Table 5.1: Bruker Library AU Programsooi ittt ettt e e e eitee e e e e nnaee e e e neeeas 97
Table 6.1: TopSpin Parameters of Type INtEGEr..........uiiiiiiiiiii s 107
Table 6.2: TopSpin Parameters of Type FIoat............oooiiiiiiiiiiiiie e 107
Table 6.3: TopSpin Parameters of Type DOUDIEccooiiiiiiiiiii e 108
Table 6.4: TopSpin Parameters of Type Character-String ... 108

H146194_10_010 113 /122

List of Tables

114 /122 H146194_10_010

Index

A

ABORT

ABS

ABS1

ABS2

ABSD

ABSD1

ABSD2

ABSF

ABSF2

ABSOT1

ABSOT2

ABST1

ABST2

ADD
ADD_CURDAT_TO_PORTFOLIO
ADD_TO_PORTFOLIO
ADD2D

ADDC

addfid command

AND

APK

APKO

APK1

APKF

APKS

aucmd.h

AuditAppend
AUDITCOMMENTA
AUTOGAIN

Automatic baseline correction
AUTOPHASE
AUTOPLOT
AUTOPLOT _TO_FILE
AUTOPLOT _WITH_PORTFOLIO

38
28
31
31
28
31
31
28
28
31
31
31
32
30, 45
36, 72
35,73
32
30
67
30
28
29
29
29
29
17,18
81, 82
24
27
34
27
35,70
35,71
36, 74

AUTOPLOT_WITH_PORTFOLIO_TO_FILE 36,

75
AUTOSHIM_OFF
AUTOSHIM_ON
autoshimming

B

baseline correction
1D user defined
BC
BCM1
BCM2
Bruker library functions

C
CalcExpTime

27
27
27

29
29
32
32
11

79

cc compiler
C-code

character string parameters

CheckSumFile
CLOSE_PORTFOLIO
compileall command
compiling AU programs
constants

control statements
CONVDTA

cplbruk command
CPR_exec
CREATE_PORTFOLIO

D

DATASET
DATASET2
DATASET3
DDATASETLIST
DECLARE_PORTFOLIO
define statements
DEG90

DELPAR
DEXPNO

dircp

dircp_err

DIV

DPROCNO
DPULPROGLIST
DT

DU

DVTLIST

E

eda command

edau command
edc2 command
eddosy command
edit mode

edlock command
edmisc command
edp command

EF

EFP

EJ

EM

enhanced metafile
ERRORABORT
Executing AU programs
expinstall command

17

16
108
80

36, 73

17
16
29

16, 36, 39
35,71

23,44

23

23,45

24

35

15

26

26
24,44, 47
85

31
24,49
26
31
24
28

36, 64
8,9,10,12
23,73
26

10

27

31
36, 63
29
29, 46
27

29
71,75
38

8,9

H146194_10_010

115/122

F

F1DISCO
F1PROJN
F1PROJP
F1SUM
F2DISCO
F2PROJN
F2PROJP
F2SUM

fentl.h
FETCHDOSYPAR
FETCHPAR
FETCHPAR1
FETCHPAR1S
FETCHPARS3
FETCHPAR3S
FETCHPARM
FETCHPARN
FETCHPARNS
FETCHPARS
FETCHPARS3
FETCHT1PAR
fidtoser AU program
FileSelect

FILT

float parameters
FMC

FP

freedir
FROMJDX

FT

ft command

G

Gaussian deconvolution

Gaussian window multiplication

GDCHECK
GDCHECKRAW
GDCON
GENFID
GENSER
GETCURDATA
GETCURDATAZ2
GETCURDATAS
GETDATASET
getdir
GETDOUBLE
GETFLOAT
gethighest
GETINT
GETLCOSY
GETLIM
GETLINV
GETLJRES
GETLXHCO
getParfileDirForRead
getParfileDirForWrite

33

33

33

33

33

33

33

33

18

26
25,63
25

25

25

25

26

25

25
25,64
64
26, 63
58

82

31
107
29

29

85
36, 60
29

11

31
29
24
24
31
29
33
23
24
24
46
83
25,76
25,76
86
25,75
35
35
35
35
35
86
88

GETPROSOL
getstan
GETSTRING
GetTsVersionDot
GF

GFP

GM

GO
GPULPROGLIST
GVTLIST

H

header files
Hilbert Transform
HT

IDATASETLIST

IEXPNO

IFEODATASETLIST

IFEOPULPROGLIST

IFT

1]

IJ

ILOOPCOUNTLIST

include statements

integer parameters

intrng file

Inverse Fourier Transform
2D

IPROCNO

IPULPROGLIST

IVTLIST

J

JCAMP-DX file
JCAMP-DX format
JCONV

Jeol data set

L

lastparflag variable
LDCON
LEVCALC
LFILTER
LG

LGAIN

LI

limits.h
LIPP

LIPPF

LO

LOCK

lock power
LOCK_OFF

25
89
25,77

29
29
29
26
26
28

18
29, 32
29

24
24, 46, 51
24

26

29

26

27

19

15, 16
107
7

29

33
24,48
19, 26
28

36, 61
30, 60
36, 62

36

12
31
32
27
27
27
30
18
30
30
27
27
27
27

116 /122

H146194_10_010

LOCK_ON 27 QUIT 38
loop gain 27 QUITMSG 38
loop structures 15
loop time 27 R
LOPO 27
LS 31 R12 35
LTIME 27 R13 35
R23 35
M raw data 52
RDATASETLIST 24
Magnitude calculation 29 reg file 30
MAKE_ZERO _FID 26 REV1 32
MAS unit 28 REV2 32
MASE 28 REXPNO 24,48
MASG 28 RGA 26
MASH 28 RHNP 34
MASI 28 RHPP 34
MASR 28 RMISC 30
MASRGET 28 ROT 27
math.h 18 rotation 27
MC 29 ROTOFF 27
MDCON 31 RPAR 26, 68
mkudir 91 RPROCNO 24,50
MUL 31, 45 RPULPROGLIST 19, 26
MULC 31 RS 31
multizg AU program 44 RSC 34, 54
RSER 34, 57
N RSER2D 59
RSH 27
NM 31 RSR 34, 54
NZP 31 RV 31
RVNP 34
P RVPP 34
RVTLIST 28
parameter type 107
PathXWinNMR function 91
phase correction first order 29 S
phase correction zero order 29 SAB 29
PHC1 29 SETCURDATA 23,43, 44
PK 29 SETDATASET 24
plot_to file AU program 70 SETPULPROG 26
portfolio of XWIN-PLOT 71,72,73,74,75 SETSH 27
postscript file 70 SETUSER 24
pow_next 92 Show_status 94
Power spectrum 32 showfile 94
PP 30 Sine window multiplication 29
PPH 30 SINM 29
PPP 30 SINO 29
PrintExpTime 79 sleep 95
Proc_err 93 Spline baseline correction 29
Proc_err function 15 splitser AU program 57
PS 29 SREF 29
PTILT 32 stdio.h 18
PTILT1 32 stdlib.h 18
STOP 38
Q STOPMSG 38
STOREDOSYPAR 26
QSIN 29 STOREPAR 25, 65
quick reference 8 STOREPAR1 25
H146194_10_010 117 /122

STOREPAR1S
STOREPAR3
STOREPAR3S
STOREPARM
STOREPARN
STOREPARNS
STOREPARS
STORET1PAR
string.h

SUB1

SUB1D1
SUB1D2
SUB2
subroutines
SWEEP_OFF
SWEEP_ON
SYM

SYMA

SYMJ

-

TABS1

TABS2

TABS3

Tcl/Tk scripts
TE2GET
TE2READY
TE2SET
TEGET
temperature unit
TEPAR
TEREADY
TESET

TF1

TF1P

TF2

TF2P

TF3

TF3P

TILT

™

TOJDX
TOJDX5
Trapezoidal baseline correction
Trapezoidal window multiplication
TRF

TUNE

TUNESX

U

unistd.h

unlinkpr

user defined variables
UWM

25
25
25,67

25, 66
26
25,67
26, 66
18
32
32
32
32
12,13
27
27
32
32
32

35
35
34

28
28
28
27
27,28
28
28
27
34
34
34
34
34
34
32
29
36
59
31
29
30
27
27

18
95
12,13

V

variable assignments
variable declarations
Varian data set
VCONV

VIEWDATA

viewing AU programs
VT

VTLIST

w

WAIT_UNTIL
WMISC
WPAR
WRA
WRP
WRPA
WSC
WSER
WSERP
WSH
WSR

X

XAU
XAUA
XAUP
XAUPW
XCMD
XF1
XF1M
XF1P
XF1PS
XF2
XF2M
XF2P
XF2PS
XFB
XFBM
XFBP
XFBPS
XHT1
XHT2
XIF1
XIF2
XMAC
XTRF
XTRF2
XTRFP
XTRFP1
XTRFP2
XWP_LP
XWP_PP

15

15

36

36, 61
24,51, 52
10

28

28

36, 42
30
26, 69
24,52
24,52
24,53
34, 56
34, 58
34
27
55

36
36
36
36
36, 41
32
32
32
32

32
32
32
32
32
32
32
32
32
33
33
37
33
33
33
33
33
35
35

118 /122

H146194_10_010

Z

zero order phase correction 29
ZERT1 33
ZERT2 33
ZF 31
ZG 26
ZP 31

H146194_10_010 119/122

120/ 122 H146194_10_010

Bruker Corporation

info@bruker.com
www.bruker.com

Part No: H146194

	 Contents
	1 Introduction
	1.1 What is New in TopSpin 4.0
	1.2 What is New in TopSpin 3.0
	1.3 What is New in TopSpin 2.1
	1.4 What is New in TopSpin 2.0
	1.5 What are AU Programs?
	1.6 Other Manuals Describing AU Programs/Macros
	1.7 Quick Reference to Using AU Programs
	1.8 Installing and Compiling Au Programs
	1.9 Executing AU Programs
	1.10 Viewing AU Programs
	1.11 Compiling AU Progams with Options
	1.12 About AU Macros
	1.13 About Bruker Library Functions
	1.14 Creating Your Own AU Programs
	1.14.1 Writing a Simple AU Program
	1.14.2 Using Variables
	1.14.2.1 Predefined Dedicated Variables
	1.14.2.2 Predefined General Variables
	1.14.2.3 User Defined Variables

	1.14.3 Using AU Macros with Arguments
	1.14.4 Using AU Programs with Arguments
	1.14.5 Using C-Language Statements
	1.14.6 Additional Hints on C-Statements
	1.14.7 Viewing Bruker Standard AU Programs for Macro Syntax

	1.15 How an AU Program is Translated into C-Code
	1.15.1 Using the Native gcc Compiler

	1.16 Listing of all Predefined C-Statements
	1.16.1 Including Header Files
	1.16.2 Predefined Dedicated Variables
	1.16.3 Predefined General Variables

	1.17 What to do after Changing a Parameter in an AU Program?
	1.18 Font and Format Conventions

	2 Inventory of AU Macros and Bruker Library Functions
	2.1 Naming Conventions
	2.2 Macros for Data set Handling
	2.3 Macros Prompting the User for Input
	2.4 Macros Handling TopSpin Parameters
	2.5 Acquisition Macros
	2.6 Macros Handling the Shim Unit and the Sample Changer
	2.7 Macros Handling the Temperature Unit
	2.8 Macros Handling the MAS Unit
	2.9 1D Processing Macros
	2.10 Peak Picking, Integration and Miscellaneous Macros
	2.11 Macros for Algebraic Operations on Data sets
	2.12 Deconvolution Macros
	2.13 2D Processing Macros
	2.14 Macros Reading and Writing Projections etc.
	2.15 3D Processing Macros
	2.16 Spectral Width Calculation Macros
	2.17 Plot Editor Related Macros
	2.18 Macros Converting Data sets
	2.19 Macros to Execute Other AU Programs, TopSpin Macros or Commands
	2.20 Bruker Library Functions
	2.21 Macros for Loop Control
	2.22 Macros to Return from an AU Program

	3 Detailed Description of AU Macros
	3.1 General AU Macros
	3.1.1 CPR_exec
	3.1.2 XAU
	3.1.3 XCMD
	3.1.4 XAUA
	3.1.5 XAUP
	3.1.6 XAUPW
	3.1.7 WAIT_UNTIL

	3.2 TopSpin Interface Functions
	3.3 Macros Changing the Current AU Data set
	3.3.1 SETCURDATA
	3.3.2 DATASET
	3.3.3 DATASET2, DATASET3
	3.3.4 GETDATASET
	3.3.5 IEXPNO
	3.3.6 DEXPNO
	3.3.7 REXPNO
	3.3.8 IPROCNO
	3.3.9 DPROCNO
	3.3.10 RPROCNO
	3.3.11 VIEWDATA
	3.3.12 VIEWDATA_SAMEWIN

	3.4 Macros Copying Data sets
	3.4.1 WRA
	3.4.2 WRP
	3.4.3 WRPA

	3.5 Macros Handling Rows/Columns
	3.5.1 RSR
	3.5.2 RSC
	3.5.3 WSR
	3.5.4 WSC
	3.5.5 RSER
	3.5.6 WSER
	3.5.7 RSER2D

	3.6 Macros Converting Data sets
	3.6.1 TOJDX, TOJDX5
	3.6.2 FROMJDX
	3.6.3 VCONV
	3.6.4 JCONV

	3.7 Macros Handling TopSpin Parameters
	3.7.1 FETCHPAR
	3.7.2 FETCHPARS
	3.7.3 STOREPAR
	3.7.4 STOREPARN
	3.7.5 STOREPARS
	3.7.6 RPAR
	3.7.7 WPAR

	3.8 Macros for Plot Editor/Autoplot
	3.8.1 AUTOPLOT
	3.8.2 AUTOPLOT_TO_FILE
	3.8.3 CREATE_PORTFOLIO
	3.8.4 ADD_CURDAT_TO_PORTFOLIO
	3.8.5 ADD_TO_PORTFOLIO
	3.8.6 CLOSE_PORTFOLIO
	3.8.7 AUTOPLOT_WITH_PORTFOLIO
	3.8.8 AUTOPLOT_WITH_PORTFOLIO_TO_FILE

	3.9 Macros Prompting the User for Input
	3.9.1 GETINT
	3.9.2 GETFLOAT, GETDOUBLE
	3.9.3 GETSTRING

	4 Bruker Library Functions
	4.1 CalcExpTime, PrintExpTime
	4.2 CheckSumFile
	4.3 AuditAppend
	4.4 AuditCreate
	4.5 FileSelect
	4.6 getdir
	4.7 freedir
	4.8 dircp, dircp_err
	4.9 gethighest
	4.10 getParfileDirForRead
	4.11 getParfileDirForWrite
	4.12 getstan
	4.13 GetTsVersionDot
	4.14 mkudir
	4.15 PathXWinNMR
	4.16 pow_next
	4.17 Proc_err
	4.18 Show_status
	4.19 showfile
	4.20 sleep
	4.21 unlinkpr

	5 List of Bruker AU programs
	6 TopSpin Parameter Types
	6.1 Integer Parameters
	6.2 Float Parameters
	6.3 Double Parameters
	6.4 Character-string Parameters

	7 Contact
	 List of Figures
	 List of Tables
	 Index

