

Sample Preparation

Prepare a **sample** containing the **analyte** and the internal reference standard (**reference**). The following information will be needed when setting up the potency determination experiment:

- Purity of the reference
- Weight of reference and of analyte in mg
- Structure of the analyte (mol file)
- Sample's solvent. A tip to get rid of exchangable protons: add D₂O (50ul in 600ul dDMSO)

For each reference's integral region:

- The left and right borders in ppm
- The proton content
- The multiplicity (optional)

Optional: prepare and measure a ¹H spectra of the analyte and the reference separately, in order to identify regions with no overlapping between the analyte and the reference. Overlap would lead to large errors.

Start TopSpin*:

Start IconNMR with the TopSpin command: *iconc*

Add the P_PROTON experiment to the desired user:

Note:

- Refer to IconNMR reference guide for more details

- Extra license is not required when working at the spectrometer

* TopSpin 3.5pl7 or above

Create a new Experiment for the holder with the sample. Give an experiment name (use letters, numbers and no spaces)

Change D1 Delay (default is 40s)

IconNMR configuration allows to define parameters that can be changed (9)

	User	Specific Parameters/Commands	
	Ω	td Size of fid ns Number of scans	
9		p1 Pulse te Sample temperature	
Ř			
ļ	2		10
	🖕 Ei	ntry Box	—
44	User	Specific Parameters/Commands	d1
Щ	Para	meter's Description	Delays
	Ľ	App <u>e</u> nd <u>M</u> odify	Delete Update User Files Close

Then when setting up a new experiment, D1 is available by clicking on the *Par* button (**12**), together with the number of scans (NS):

Analysis 12	Par			Title/	Drig
	=	4] e	3	2	
	TD D1 NS P1 TE	10	53840 60 8 10 298	[sec] [µsec] [K]	Size of fid Delays Number of scans Pulse Sample temperature

Select the Internal Reference Standard Batch to be used (13)

If maleic acid is not used as internal reference standard, then click on R^+ button (14) to create a new one. B^+ button (15) will create a batch for an already defined internal reference standard.

Enter the exact weight of analyte and internal reference standard in mg (16).

Add a new reference by clicking on R+ (14)

Nolecular Mass							gin
lignals	Mentifier	Shift (ppm)	Multipleity	Coupring (Hz)	Protons	Quant	New
							Edt
							Remove

Add the following information for the new internal reference:

- Name
- Molecular mass

- All reference integral regions by clicking

on New

Identifier	CH	
2 Protons		
Shift (ppm)	from 6.3	10 6 1
Autiplicity	5	
Coupling [Htt]		
Number of Protons	2	······································
El Carbons		
Shift (ppm)	from	to
Number of Carbons	?	

Select the integrals that will be used for

Name Molecular Mass	TMB						
	168.19						9
Signals	Identifier	Shift (ppm)	Multiplicity	Coupling [Hz]	Protons	Quant	New
	CH	[6.3,6.1]	s	-	2	7	Edit
	CH2	123211	5		2		

Add a new Batch by clicking on B+(15)

- Select the reference for the new batch
- Enter a batch name
- Enter the potency of the batch

🤹 Add Batch	x
Reference	TMB (168.19 g/mol)
Potency	98
Batch	TMB batch 98%
	Ok Cancel

The batch is then ready to be selected for a potency determination.

Deleting a reference (19) or a batch (20) is not possible in IconNMR but possible in CMC-assist:

Reference	maleic acid (116.07 g/mol)	-] [•	
Batch	DEFAULT, potency 100.00%	•][+	

Note: modifications in CMC-assist qNMR settings can be discarded by clicking on *Cancel* and are stored only if the potency calculation is started

20

Automated Potency Determination: Analysis and Reporting

The analysis of the measured data is automatic

Open in CMC-assist with a right click in the *Preceding Experiments*

Get the Potency excel report (22), the consistency analysis Report (23) , integral regions used for potency determination (24).

	Shor	t Report -	Full Rep	ort - Eoter	ncy Repor	- rep	ent String 🛒	Print - propries	py Mobile	-
	*8 *2 /8 /2			oper torth	the potency is current datase	report in Ex at if it has a C	cel format 2NMR calculation			
Browser	Last50 G	roups Project		511	otency, solindac_t	mb 2 2 C/Dut	en/FabriceDataset			
IH p Sutomatic Existing re	olency_sul analysis g port is out	indec_tmb enerated by B of date.	2 1 uker CMC (13390		• ► 4 5	<u></u>	δ 7.021 -	n <u>4</u> 6733	2 16,m	- 10 - 10
Shichare			1		8.2.0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	01/0			Caria Car	ette
		8			4H 1H	2H 1H			1H2H 1H 555 522293 431.3 1.6	3H H 3

Automated Potency Determination: Replicates

The average potency of several samples prepared in duplicate, triplicate... can be automatically calculated by following the steps below:

Setup the first experiment as described before. Don't submit it.

Select the replicate by selecting the first experiment with a left click (**R1**) and then, press *Ctrl key* and select the holders where the replicate samples are (**R2**).

Then right click, select *Averaging/Use* selected experiments (**R3**)

		R1			
Hol	Туре	Status	Disk		Name
▽1	100 🕬 🚺	Run	5		
	1k	P N	C:\data\am	nr_icon	Potency Sulindad
▽ 2	100 🕬 🚺	Que			
	1 fr	Que Riz	C:\data\am	nr_icon	Potency Sulindad
▽ 3	1	Queued			
	1 fr	Queuec	Submit	Licon	Potency Sulinda
▶ 4	L	Availab	Cancel		
⊳ 5	L	Availab	Edit		
▶ 6	L	Availab	Delete		
▶ 7	L	Availab	Add		
▶ 8	LI.	Availab -			50
▶ 9	Ü.	Availab	Сору		RJ
▷ 10	Ü.	Availab	Iterate		
▷ 11	<u>Li</u>	Availab	Averäging 🕨	Use sel	ected experiments
▷ 12	<u>Li</u>	Available		Copy s	ettings to next:
	110				

Automated Potency Determination: Replicates

Correct the analyte's and reference's weights by right click/*Edit* on each of the experiments and edit the weight as in (16).

Select all replicates and submit:

<u>S</u>ubmit

When all experiments are finished, open one of them in CMC-assist as in step

The average potency (R7)

Region 2	Averaged Area analyte	SD Area analyte	N analyte [mmol	Potency [%]	RSD Potency [%]
1.00	1.00	0.00	0.02	98.05	
1.01	1.00	0.00	0.05	99.92	R8
1.00	1.00	0.00	0.02	99.70	
				99.23	0.84

Integral Region Adjustments and Manual Report Generation

The automatically selected analyte integral regions can be modified manually and the reports updated. **Select/UnSelect analyte integral regions**: right click on a CMC-assist integral region (E1) and tick/untick (E2).

Integral Region Adjustments and Manual Report Generation

Enter command: qnmr combineResults

δ ^A δ ^P	
Status: UNCLEAR	
qnmr combineResults	

Click on <i>F</i>	<i>dit List</i> foi	r inst: E	6e:	
Browse For List	Find Datasets	Edit List	Save+Close	Cancel

Copy/Paste there the paths to

Click to generate an updated combined report that override any existing one Save+Close

Define and Use Predefined Analyte's Integral Regions

Measure first with IconNMR as described before. Open the results with CMCassist, modify the analyte integrals (**E1 E2 E3**) that were automatically chosen. Open Potency Calculation (**E4**) Click on the button to edit :

The analyte's integral(s) from spectrum is the default. Selecting *Clone* (**E9**) allows to use them as a template to create and store a user defined analyte integral definition

The user defined analyte integral definition is stored and can be reused using the drop down menu (E10 E10

Analyte Integrals

MyAnalyteInetrgalDefinition From Spectrum

AnalyteInetrgalDefiniti

Potency Determination
Quick Overview

Useful Links

 License request for using another workstation (Demo CMC-assist license) <u>https://www.bruker.com/nmr_license_requests.h</u> <u>tml</u>

Learn More

Potency determination Bruker webpage <u>https://www.bruker.com/products/mr/nmr/nmr-software/software/qnmr/overview.html</u>

